Skip to main content

Molecular Basis of Allosteric Transitions: GroEL

  • Conference paper
  • First Online:
Macromolecular Crystallography

Abstract

Chaperonins such as GroEL from Escherichia coli are molecular machines that facilitate protein folding by undergoing energy (ATP)-dependent movements that are coordinated in time and space owing to complex allosteric regulation. Here, we describe some of the various functional (allosteric) states of GroEL, the pathways by which they inter-convert and the coupling between allosteric transitions and protein folding reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cliff MJ, Kad NM, Hay N, Lund PA, Webb MR, Burston SG, Clarke AR (1999) A kinetic analysis of the nucleotide-induced allosteric transitions of GroEL. J Mol Biol 293:667–684

    Article  Google Scholar 

  2. Danziger O, Rivenzon-Segal D, Wolf SG, Horovitz A (2003) Conversion of the allosteric transition of GroEL from concerted to sequential by the single mutation Asp-155  →  Ala. Proc Natl Acad Sci USA 100:13797–13802

    Article  ADS  Google Scholar 

  3. Eigen M (1967) Kinetics of reaction control and information transfer in enzymes and nucleic acids. Nobel Symp 5:333–369

    Google Scholar 

  4. Frank GA, Kipnis Y, Smolensky E, Daube SS, Horovitz A, Haran G (2008) Design of an optical switch for studying conformational dynamics in individual molecules of GroEL. Bioconjug Chem 19:1339–1341

    Article  Google Scholar 

  5. Horovitz A, Amir A, Danziger O, Kafri G (2002) ϕ value analysis of heterogeneity in pathways of allosteric transitions: Evidence for parallel pathways of ATP-induced conformational changes in a GroEL ring. Proc Natl Acad Sci USA 99:14095–14097

    Article  ADS  Google Scholar 

  6. Horovitz A, Willison KR (2005) Allosteric regulation of chaperonins. Curr Opin Struct Biol 15:646–651

    Article  Google Scholar 

  7. Horwich AL, Fenton WA (2009) Chaperonin-mediated protein folding: using a central cavity to kinetically assist polypeptide chain folding. Q Rev Biophys 42:83–116

    Article  Google Scholar 

  8. Inobe T, Makio T, Takasu-Ishikawa E, Terada TP, Kuwajima K (2001) Nucleotide binding to the chaperonin GroEL: non-cooperative binding of ATP analogs and ADP, and cooperative effect of ATP. Biochim Biophys Acta 1545:160–173

    Article  Google Scholar 

  9. Jacob E, Horovitz A, Unger R (2007) Different mechanistic requirements for prokaryotic and eukaryotic chaperonins: a lattice study. Bioinformatics 23:i240–i248

    Article  Google Scholar 

  10. Kass I, Horovitz A (2002) Mapping pathways of allosteric communication in GroEL by analysis of correlated mutations. Proteins: Struct Funct Genet 48:611–617

    Article  Google Scholar 

  11. Kipnis Y, Papo N, Haran G, Horovitz A (2007) Concerted ATP-induced allosteric transitions in GroEL facilitate release of protein substrate domains in an all-or-none manner. Proc Natl Acad Sci USA 104:3119–3124

    Article  ADS  Google Scholar 

  12. Koshland DE Jr, Némethy G, Filmer D (1966) Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5:365–385

    Article  Google Scholar 

  13. Lin Z, Rye HS (2006) GroEL-mediated protein folding: making the impossible, possible. Crit Rev Biochem Mol Biol 41:211–239

    Article  Google Scholar 

  14. Ma J, Sigler PB, Xu Z, Karplus M (2000) A dynamic model for the allosteric mechanism of GroEL. J Mol Biol 302:303–313

    Article  Google Scholar 

  15. Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118

    Article  Google Scholar 

  16. Papo N, Kipnis Y, Haran G, Horovitz A (2008) Concerted release by ATP of individual domains of a protein substrate of GroEL is demonstrated with FRET. J Mol Biol 380:717–725

    Article  Google Scholar 

  17. Ranson NA, Farr GW, Roseman AM, Gowen B, Fenton WA, Horwich AL, Saibil HR (2001) ATP-bound states of GroEL captured by cryo-electron microscopy. Cell 107:869–879

    Article  Google Scholar 

  18. Rivenzon-Segal D, Wolf SG, Shimon L, Willison KR, Horovitz A (2005) Sequential ATP-induced allosteric transitions of the cytoplasmic chaperonin containing TCP-1 revealed by EM analysis. Nat Struct Mol Biol 12:233–237

    Article  Google Scholar 

  19. Shimon L, Hynes GM, McCormack EA, Willison KR, Horovitz A (2008) ATP-induced allostery in the eukaryotic chaperonin CCT is abolished by the mutation G345D in CCT4 that renders yeast temperature-sensitive for growth. J Mol Biol 377:469–477

    Article  Google Scholar 

  20. Taniguchi M, Yoshimi T, Hongo K, Mizobata T, Kawata Y (2004) Stopped-flow fluorescence analysis of the conformational changes in the GroEL apical domain: relationships between movements in the apical domain and the quaternary structure of GroEL. J Biol Chem 279:16368–16376

    Article  Google Scholar 

  21. Tehver R, Chen J, Thirumalai D (2009) Allostery wiring diagrams in the transitions that drive the GroEL reaction cycle. J Mol Biol 387:390–406

    Article  Google Scholar 

  22. Wyman J (1967) Allosteric linkage. J Am Chem Soc 89:2202–2218

    Article  Google Scholar 

  23. Xu Z, Horwich AL, Sigler PB (1997) The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388:741–750

    Article  ADS  Google Scholar 

  24. Yang Z, Májek P, Bahar I (2009) Allosteric transitions of supramolecular systems explored by network models: application to chaperonin GroEL. PLoS Comput Biol 5:e1000360

    Article  Google Scholar 

  25. Yifrach O, Horovitz A (1994) Two lines of allosteric communication in the oligomeric chaperonin GroEL are revealed by the single mutation Arg196  →  Ala. J Mol Biol 243:397–401

    Article  Google Scholar 

  26. Yifrach O, Horovitz A (1995) Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL. Biochemistry 34:5303–5308

    Article  Google Scholar 

  27. Yifrach O, Horovitz A (1996) Allosteric control by ATP of non-folded protein binding to GroEL. J Mol Biol 255:356–361

    Article  Google Scholar 

  28. Yifrach O, Horovitz A (1998) Transient kinetic analysis of adenosine 5’-triphosphate binding-induced conformational changes in the allosteric chaperonin GroEL. Biochemistry 37:7083–7088

    Article  Google Scholar 

  29. Yifrach O, Horovitz A (1998) Mapping the transition state of the allosteric pathway of GroEL by protein engineering. J Am Chem Soc 120:13262–13263

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amnon Horovitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this paper

Cite this paper

Horovitz, A. (2012). Molecular Basis of Allosteric Transitions: GroEL. In: Carrondo, M., Spadon, P. (eds) Macromolecular Crystallography. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2530-0_7

Download citation

Publish with us

Policies and ethics