Skip to main content

Co-translational Protein Processing, Folding, Targeting, and Membrane Insertion of Newly Synthesized Proteins

  • Conference paper
  • First Online:
Book cover Macromolecular Crystallography

Abstract

Newly synthesized proteins leave the ribosome through the nascent polypeptide tunnel. Through the coordinated action of the ribosome associated chaperones, nascent chain processing enzymes, the signal recognition particle, and the protein insertion machinery newly synthesized proteins are brought into their native state and proper cellular localization. The interplay of these factors during ongoing synthesis requires spatial and temporal control of their interactions with the ribosome. We used electron microscopy in combination with crystallography and biochemical methods to study the structure of bacterial ribosomes and nascent chain interacting factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289:905–920

    Article  ADS  Google Scholar 

  2. Batey RT, Rambo RP, Lucast L, Rha B, Doudna JA (2000) Crystal structure of the ribonucleoprotein core of the signal recognition particle. Science 287:1232–1239

    Article  ADS  Google Scholar 

  3. Bingel-Erlenmeyer R, Kohler R, Kramer G, Sandikci A, Antolic S, Maier T, Schaffitzel C, Wiedmann B, Bukau B, Ban N (2008) A peptide deformylase-ribosome complex reveals mechanism of nascent chain processing. Nature 452:108–111

    Article  ADS  Google Scholar 

  4. Buskiewicz IA, Jockel J, Rodnina MV, Wintermeyer W (2009) Conformation of the signal recognition particle in ribosomal targeting complexes. RNA 15:44–54

    Article  Google Scholar 

  5. Deuerling E, Schulze-Specking A, Tomoyasu T, Mogk A, Bukau B (1999) Trigger factor and DnaK cooperate in folding of newly synthesized proteins. Nature 400:693–696

    Article  ADS  Google Scholar 

  6. du Plessis DJ, Berrelkamp G, Nouwen N, Driessen AJ (2009) The lateral gate of SecYEG opens during protein translocation. J Biol Chem 284:15805–15814

    Article  Google Scholar 

  7. Egea PF, Shan SO, Napetschnig J, Savage DF, Walter P, Stroud RM (2004) Substrate twinning activates the signal recognition particle and its receptor. Nature 427:215–221

    Article  ADS  Google Scholar 

  8. Egea PF, Stroud RM (2010) Lateral opening of a translocon upon entry of protein suggests the mechanism of insertion into membranes. Proc Natl Acad Sci USA 107:17182–17187

    Article  ADS  Google Scholar 

  9. Ferbitz L, Maier T, Patzelt H, Bukau B, Deuerling E, Ban N (2004) Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature 431:590–596

    Article  ADS  Google Scholar 

  10. Focia PJ, Shepotinovskaya IV, Seidler JA, Freymann DM (2004) Heterodimeric GTPase core of the SRP targeting complex. Science 303:373–377

    Article  ADS  Google Scholar 

  11. Giglione C, Boularot A, Meinnel T (2004) Protein N-terminal methionine excision. Cell Mol Life Sci 61:1455–1474

    Article  Google Scholar 

  12. Gong F, Ito K, Nakamura Y, Yanofsky C (2001) The mechanism of tryptophan induction of tryptophanase operon expression: tryptophan inhibits release factor-mediated cleavage of TnaC-peptidyl-tRNA(Pro). Proc Natl Acad Sci USA 98:8997–9001

    Article  ADS  Google Scholar 

  13. Gu SQ, Peske F, Wieden HJ, Rodnina MV, Wintermeyer W (2003) The signal recognition particle binds to protein L23 at the peptide exit of the Escherichia coli ribosome. RNA 9:566–573

    Article  Google Scholar 

  14. Halic M, Blau M, Becker T, Mielke T, Pool MR, Wild K, Sinning I, Beckmann R (2006) Following the signal sequence from ribosomal tunnel exit to signal recognition particle. Nature 444:507–511

    Article  ADS  Google Scholar 

  15. Hoffmann A, Bukau B, Kramer G (2010) Structure and function of the molecular chaperone trigger factor. Biochim Biophys Acta 1803:650–661

    Article  Google Scholar 

  16. Hoffmann A, Merz F, Rutkowska A, Zachmann-Brand B, Deuerling E, Bukau B (2006) Trigger factor forms a protective shield for nascent polypeptides at the ribosome. J Biol Chem 281:6539–6545

    Article  Google Scholar 

  17. Jagath JR, Matassova NB, de Leeuw E, Warnecke JM, Lentzen G, Rodnina MV, Luirink J, Wintermeyer W (2001) Important role of the tetraloop region of 4.5 S RNA in SRP binding to its receptor FtsY. RNA 7:293–301

    Article  Google Scholar 

  18. Janda CY, Li J, Oubridge C, Hernandez H, Robinson CV, Nagai K (2010) Recognition of a signal peptide by the signal recognition particle. Nature 465:507–510

    Article  ADS  Google Scholar 

  19. Kaiser CM, Chang HC, Agashe VR, Lakshmipathy SK, Etchells SA, Hayer-Hartl M, Hartl FU, Barral JM (2006) Real-time observation of trigger factor function on translating ribosomes. Nature 444:455–460

    Article  ADS  Google Scholar 

  20. Keenan RJ, Freymann DM, Stroud RM, Walter P (2001) The signal recognition particle. Annu Rev Biochem 70:755–775

    Article  Google Scholar 

  21. Kiefer D, Kuhn A (2007) YidC as an essential and multifunctional component in membrane protein assembly. Int Rev Cytol 259:113–138

    Article  Google Scholar 

  22. Kohler R, Boehringer D, Greber B, Bingel-Erlenmeyer R, Collinson I, Schaffitzel C, Ban N (2009) YidC and Oxa1 form dimeric insertion pores on the translating ribosome. Mol Cell 34:344–353

    Article  Google Scholar 

  23. Kramer G, Boehringer D, Ban N, Bukau B (2009) The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat Struct Mol Biol 16:589–597

    Article  Google Scholar 

  24. Kramer G, Patzelt H, Rauch T, Kurz TA, Vorderwulbecke S, Bukau B, Deuerling E (2004) Trigger factor peptidyl-prolyl cis/trans isomerase activity is not essential for the folding of cytosolic proteins in Escherichia coli. J Biol Chem 279:14165–14170

    Article  Google Scholar 

  25. Kramer G, Ramachandiran V, Horowitz PM, Hardesty B (2002) The molecular chaperone DnaK is not recruited to translating ribosomes that lack trigger factor. Arch Biochem Biophys 403:63–70

    Article  Google Scholar 

  26. Lill R, Crooke E, Guthrie B, Wickner W (1988) The “trigger factor cycle” includes ribosomes, presecretory proteins, and the plasma membrane. Cell 54:1013–1018

    Article  Google Scholar 

  27. Lotz M, Haase W, Kuhlbrandt W, Collinson I (2008) Projection structure of yidC: a conserved mediator of membrane protein assembly. J Mol Biol 375:901–907

    Article  Google Scholar 

  28. Lu J, Deutsch C (2005) Folding zones inside the ribosomal exit tunnel. Nat Struct Mol Biol 12:1123–1129

    Article  Google Scholar 

  29. Luirink J, von Heijne G, Houben E, de Gier JW (2005) Biogenesis of inner membrane proteins in Escherichia coli. Annu Rev Microbiol 59:329–355

    Article  Google Scholar 

  30. Maier T, Ferbitz L, Deuerling E, Ban N (2005) A cradle for new proteins: trigger factor at the ribosome. Curr Opin Struct Biol 15:204–212

    Article  Google Scholar 

  31. Martinez-Hackert E, Hendrickson WA (2009) Promiscuous substrate recognition in folding and assembly activities of the trigger factor chaperone. Cell 138:923–934

    Article  Google Scholar 

  32. Menetret JF, Schaletzky J, Clemons WM Jr, Osborne AR, Skanland SS, Denison C, Gygi SP, Kirkpatrick DS, Park E, Ludtke SJ et al (2007) Ribosome binding of a single copy of the SecY complex: implications for protein translocation. Mol Cell 28:1083–1092

    Article  Google Scholar 

  33. Merz F, Boehringer D, Schaffitzel C, Preissler S, Hoffmann A, Maier T, Rutkowska A, Lozza J, Ban N, Bukau B et al (2008) Molecular mechanism and structure of trigger factor bound to the translating ribosome. EMBO J 27:1622–1632

    Article  Google Scholar 

  34. Merz F, Hoffmann A, Rutkowska A, Zachmann-Brand B, Bukau B, Deuerling E (2006) The C-terminal domain of Escherichia coli trigger factor represents the central module of its chaperone activity. J Biol Chem 281:31963–31971

    Article  Google Scholar 

  35. Mitra K, Schaffitzel C, Shaikh T, Tama F, Jenni S, Brooks CL 3rd, Ban N, Frank J (2005) Structure of the E. coli protein-conducting channel bound to a translating ribosome. Nature 438:318–324

    Article  ADS  Google Scholar 

  36. Montoya G, Svensson C, Luirink J, Sinning I (1997) Crystal structure of the NG domain from the signal-recognition particle receptor FtsY. Nature 385:365–368

    Article  ADS  Google Scholar 

  37. Nakatogawa H, Ito K (2002) The ribosomal exit tunnel functions as a discriminating gate. Cell 108:629–636

    Article  Google Scholar 

  38. Nissen P, Hansen J, Ban N, Moore PB, Steitz TA (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289:920–930

    Article  ADS  Google Scholar 

  39. Rapoport TA (2007) Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 450:663–669

    Article  ADS  Google Scholar 

  40. Schaffitzel C, Oswald M, Berger I, Ishikawa T, Abrahams JP, Koerten HK, Koning RI, Ban N (2006) Structure of the E. coli signal recognition particle bound to a translating ribosome. Nature 444:503–506

    Article  ADS  Google Scholar 

  41. Shen K, Shan SO (2010) Transient tether between the SRP RNA and SRP receptor ensures efficient cargo delivery during cotranslational protein targeting. Proc Natl Acad Sci USA 107:7698–7703

    Article  ADS  Google Scholar 

  42. Solbiati J, Chapman-Smith A, Miller JL, Miller CG, Cronan JE Jr (1999) Processing of the N termini of nascent polypeptide chains requires deformylation prior to methionine removal. J Mol Biol 290:607–614

    Article  Google Scholar 

  43. Teter SA, Houry WA, Ang D, Tradler T, Rockabrand D, Fischer G, Blum P, Georgopoulos C, Hartl FU (1999) Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell 97:755–765

    Article  Google Scholar 

  44. Tomic S, Johnson AE, Hartl FU, Etchells SA (2006) Exploring the capacity of trigger factor to function as a shield for ribosome bound polypeptide chains. FEBS Lett 580:72–76

    Article  Google Scholar 

  45. Tsukazaki T, Mori H, Fukai S, Ishitani R, Mori T, Dohmae N, Perederina A, Sugita Y, Vassylyev DG, Ito K et al (2008) Conformational transition of Sec machinery inferred from bacterial SecYE structures. Nature 455:988–991

    Article  ADS  Google Scholar 

  46. Van den Berg B, Clemons WM Jr, Collinson I, Modis Y, Hartmann E, Harrison SC, Rapoport TA (2004) X-ray structure of a protein-conducting channel. Nature 427:36–44

    Article  ADS  Google Scholar 

  47. Voss NR, Gerstein M, Steitz TA, Moore PB (2006) The geometry of the ribosomal polypeptide exit tunnel. J Mol Biol 360:893–906

    Article  Google Scholar 

  48. Woolhead CA, McCormick PJ, Johnson AE (2004) Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 116:725–736

    Article  Google Scholar 

  49. Xie K, Dalbey RE (2008) Inserting proteins into the bacterial cytoplasmic membrane using the Sec and YidC translocases. Nat Rev Microbiol 6:234–244

    Google Scholar 

  50. Zeng LL, Yu L, Li ZY, Perrett S, Zhou JM (2006) Effect of C-terminal truncation on the molecular chaperone function and dimerization of Escherichia coli trigger factor. Biochimie 88:613–619

    Article  Google Scholar 

  51. Zhang X, Kung S, Shan SO (2008) Demonstration of a multistep mechanism for assembly of the SRP x SRP receptor complex: implications for the catalytic role of SRP RNA. J Mol Biol 381:581–593

    Article  Google Scholar 

  52. Zimmer J, Nam Y, Rapoport TA (2008) Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature 455:936–943

    Article  ADS  Google Scholar 

  53. Zopf D, Bernstein HD, Johnson AE, Walter P (1990) The methionine-rich domain of the 54 kd protein subunit of the signal recognition particle contains an RNA binding site and can be crosslinked to a signal sequence. EMBO J 9:4511–4517

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nenad Ban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this paper

Cite this paper

Boehringer, D., Ban, N. (2012). Co-translational Protein Processing, Folding, Targeting, and Membrane Insertion of Newly Synthesized Proteins. In: Carrondo, M., Spadon, P. (eds) Macromolecular Crystallography. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2530-0_2

Download citation

Publish with us

Policies and ethics