Skip to main content

Part of the book series: ERCOFTAC Series ((ERCO,volume 18))

  • 1153 Accesses

Abstract

It has been argued in (Thomson and Devenish in J. Fluid Mech. 526: 277–302, 2005) that owing to the lack of sweeping of small scales by large scales in kinematic simulation, this latter technique cannot predict Richardson’s regime. Here, we argue that the discrepancies between papers from different authors on the ability of kinematic simulation to predict Richardson power law may be linked to the inertial subrange they have used. For small inertial subranges, KS is efficient and the significance of the sweeping can be ignored, as a result we limit the KS agreement with the Richardson scaling law t 3 for inertial subranges k N /k 1≤104. Above this value, the sweeping effect of the small scales by the large scales may need to be taken into consideration though we cannot yet conclude as to the reason for the KS departing from the prediction of Richardson’s locality assumption when k N /k 1≥104.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Batchelor, G.K.: The application of the similarity theory of turbulence to atmospheric dispersion. Q. J. R. Meteorol. Soc. 76, 133 (1950)

    Article  Google Scholar 

  2. Borgas, M.S., Yeung, P.K.: Relative dispersion in isotropic turbulence: Part 2. A new stochastic model with Reynolds number dependence. J. Fluid Mech. 503, 125 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, L., Goto, S., Vassilicos, J.C.: Turbulent clustering of stagnation points and inertial particles. J. Fluid Mech. 553, 143–154 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Davila, J., Vassilicos, J.C.: Richardson pair diffusion and the stagnation point structure of turbulence. Phys. Rev. Lett. 91, 144501 (2003)

    Article  Google Scholar 

  5. El-Azm, A.A., Nicolleau, F.: Dispersion of heavy particle sets in an isotropic turbulence using kinematic simulation. Phys. Rev. E 78(1), 0616310 (2008)

    Google Scholar 

  6. Fung, J.C.H.: Effect of nonlinear drag on the settling velocity of particles in homogeneous isotropic turbulence. J. Geophys. Res. 103(C12) (1998)

    Google Scholar 

  7. Fung, J.C.H., Vassilicos, J.C.: Two-particle dispersion in turbulentlike flows. Phys. Rev. E 57(2), 1677–1690 (1998)

    Article  MathSciNet  Google Scholar 

  8. Fung, J.C.H., Hunt, J.C.R., Malik, N.A., Perkins, R.J.: Kinematic simulation of homogeneous turbulence by unsteady random Fourier modes. J. Fluid Mech. 236, 281–317 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goto, S., Osborne, D.R., Vassilicos, J.C., Haigh, J.D.: Acceleration statistics as measures of statistical persistence of streamlines in isotropic turbulence. Phys. Rev. E 71, 015301(R) (2005)

    Article  MathSciNet  Google Scholar 

  10. Ishihara, T., Kaneda, Y.: Relative diffusion of a pair of fluid particles in the inertial subrange of turbulence. Phys. Fluids 14, L69 (2002)

    Article  Google Scholar 

  11. Jullien, M.C., Paret, J., Tabeling, P.: Richardson pair dispersion in two-dimensional turbulence. Phys. Rev. Lett. 82(14), 2872–2874 (1999)

    Article  Google Scholar 

  12. Khan, M.A.I., Pumir, A., Vassilicos, J.C.: Kinematic simulation of multi point turbulent dispersion. Phys. Rev. E 68, 026313 (2003)

    Article  MathSciNet  Google Scholar 

  13. Kraichnan, R.H.: Diffusion by a random velocity field. Phys. Fluids 13, 22 (1970)

    Article  MATH  Google Scholar 

  14. Malik, N.A., Vassilicos, J.C.: A Lagrangian model for turbulent dispersion with turbulent-like flow structure: comparison with DNS for two-particle statistics. Phys. Fluids 11(6), 1572–1580 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Morel, P., Larchevêque, M.: Relative dispersion of constant-level balloons in the 20mb general circulation. J. Atmos. Sci. 31, 2189 (1974)

    Article  Google Scholar 

  16. Nicolleau, F., ElMaihy, A.: Study of the development of a 3-D material surface and an iso-concentration field using KS. J. Fluid Mech. 517, 229–249 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nicolleau, F., ElMaihy, A.: Study of the effect of the Reynolds number on three- and four-particle diffusion in three-dimensional turbulence using kinematic simulation. Phys. Rev. E 74(4), 046302 (2006)

    Article  Google Scholar 

  18. Nicolleau, F.C.G.A., Nowakowski, A.F.: Presence of a Richardson’s regime in kinematic simulations. Phys. Rev. E 83(5), 056317 (2011)

    Article  Google Scholar 

  19. Nicolleau, F., Yu, G.: Two-particle diffusion and locality assumption. Phys. Fluids 16(4), 2309–2321 (2004)

    Article  Google Scholar 

  20. Obukhov, A.M.: On the distribution of energy in the spectrum of turbulent flow. Bull. Acad. Sci. USSR, Géogr. Géophys., Moscow 5, 453–466 (1941)

    Google Scholar 

  21. Osborne, D.R., Vassilicos, J.C., Sung, K., Haigh, J.D.: Fundamentals of pair diffusion in kinematic simulations of turbulence. Phys. Rev. A 74, 036309 (2006)

    MathSciNet  Google Scholar 

  22. Ott, S., Mann, J.: An experimental investigation of the relative diffusion of particle pairs in three-dimensional flows. J. Fluid Mech. 422, 207–223 (2000)

    Article  MATH  Google Scholar 

  23. Paret, J., Tabeling, P.: Experimental observation of the two-dimensional inverse energy cascade. Phys. Rev. Lett. 79, 4162 (1997)

    Article  Google Scholar 

  24. Richardson, L.F.: Atmospheric diffusion on a distance-neighbour graph. Beitr. Phys. Frei. Atmos. 15, 24–29 (1926)

    Google Scholar 

  25. Sawford, B.L.: Generalized random forcing in random walk turbulent dispersion models. Phys. Fluids 29, 3582–3585 (1986)

    Article  Google Scholar 

  26. Sawford, B.L., Yeung, P.K., Hackl, J.F.: Reynolds number dependence of relative dispersion statistics in isotropic turbulence. Phys. Fluids 20, 065111 (2008)

    Article  Google Scholar 

  27. Thomson, D.J.: Random walk modelling of diffusion in inhomogeneous turbulence. Q. J. R. Meteorol. Soc. 110, 1107–1120 (1984)

    Article  Google Scholar 

  28. Thomson, D.J., Devenish, B.J.: Particle pair separation in kinematic simulations. J. Fluid Mech. 526, 277–302 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. van Dop, H., Nieuwstadt, F.T.M., Hunt, J.C.R.: Random walk models for particle displacements in inhomogeneous unsteady turbulent flows. Phys. Fluids 28, 1639–1653 (1984)

    Google Scholar 

  30. Yeung, P.K.: Direct numerical simulation of two-particle relative diffusion in isotropic turbulence. Phys. Fluids 6, 3416–3428 (1994)

    Article  MATH  Google Scholar 

  31. Yeung, P.K., Borgas, M.S.: Relative dispersion in isotropic turbulence. J. Fluid Mech. 503, 93 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. C. G. A. Nicolleau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Nicolleau, F.C.G.A., Abou El-Azm Aly, A. (2012). Can Kinematic Simulation Predict Richardson’s Regime?. In: Nicolleau, F., Cambon, C., Redondo, JM., Vassilicos, J., Reeks, M., Nowakowski, A. (eds) New Approaches in Modeling Multiphase Flows and Dispersion in Turbulence, Fractal Methods and Synthetic Turbulence. ERCOFTAC Series, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2506-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2506-5_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2505-8

  • Online ISBN: 978-94-007-2506-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics