Skip to main content

Detached Eddy Simulation for Turbulent Flows in a Pipe with a Snowflake Fractal Orifice

  • Chapter

Part of the book series: ERCOFTAC Series ((ERCO,volume 18))

Abstract

Turbulent flows in a pipe with a snowflake fractal shape (SF2) orifice are investigated using the parallelized, density-based, dynamic mesh and detached eddy simulation code (DG-DES) (Xia, PhD thesis, 2005; Xia and Qin, AIAA 2005-106, 2005). For comparison with the laboratory experiment, the flow is essentially a low Mach number flow. In order to tackle the low speed problem of the density based method, the SLAU (Simple Low dissipation AUSM) (Shima and Kitamura in 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA 2009-136, 2009) is adopted in this paper. The scheme exhibits low numerical dissipations for low speeds and needs no problem-dependent “cut-off Mach number”. The results for the flows after the orifice are compared with those of the corresponding experiment (Chong, PhD thesis, 2008). Comparisons show good agreements in the mean velocity profiles at the different holes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We direct the reader to other papers in this Book Series for details on Kinematic Simulation (KS).

References

  1. Abou El-Azm Aly, A., Chong, C.H.A., Nicolleau, F.C.G.A., Beck, S.B.M.: Experimental study of the pressure drop after fractal-shaped orifices in a turbulent flow pipe. Proc. World Acad. Sci., Exp. Therm. Fluid Sci. 34, 104–111 (2010)

    Article  Google Scholar 

  2. Chester, S., Meneveau, C., Parlange, M.B.: Modeling turbulent flow over fractal trees with renormalized numerical simulation. J. Comput. Phys. 225, 427–448 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chong, A.C.H.: Turbulence flow generated by a fractal grid. PhD thesis, The University of Sheffield (2008)

    Google Scholar 

  4. Davila, J., Vassilicos, J.C.: Richardson pair diffusion and the stagnation point structure of turbulence. Phys. Rev. Lett. 91, 144–501 (2003)

    Google Scholar 

  5. Fung, J.C.H., Vassilicos, J.C.: Two-particle dispersion in turbulentlike flows. Phys. Rev. E 57(2), 1677–1690 (1998)

    Article  MathSciNet  Google Scholar 

  6. Goto, S., Osborne, D.R., Vassilicos, J.C., Haigh, J.D.: Acceleration statistics as measures of statistical persistence of streamlines in isotropic turbulence. Phys. Rev. E 71, 015301(R) (2005)

    Article  MathSciNet  Google Scholar 

  7. Hurst, D., Vassilicos, J.C.: Scalings and decay of fractal-generated turbulence. Phys. Fluids 19(3), 035103 (2007)

    Article  Google Scholar 

  8. Karypis, G., Kumar, V.: User manual of METIS: a software package for partitioning unstructured graphs, partitioning meshes and computing fill-reduced orderings of sparse matrices, version 4.0. University of Minnesota (1998)

    Google Scholar 

  9. Laizet, S., Vassilicos, J.C.: Multiscale of turbulence. J. Multiscale Model. 1(1), 177196 (2009)

    Google Scholar 

  10. Laizet, S., Lamballais, E., Vassilicos, J.C.: A numerical strategy to combine high-order schemes, complex geometry and massively parallel computing for the DNS of fractal generated turbulence. Comput. Fluids 39(3), 471–484 (2010)

    Article  Google Scholar 

  11. Mandelbrot, B.: On the geometry of homogeneous turbulence with stress on the fractal dimension of the iso-surfaces of scalars. J. Fluid Mech. 72(2), 401–416 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mazzi, B., Vassilicos, J.C.: Fractal-generated turbulence. J. Fluid Mech. 502, 65–87 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mazzi, B., Okkels, F., Vassilicos, J.C.: A shell-model approach to fractal-induced turbulence. Eur. Phys. J. B 28, 243–251 (2002)

    Article  Google Scholar 

  14. Meneveau, C., Sreenivasan, K.R.: Interface dimension in intermittent turbulence. Phys. Rev. A 41(4), 2246–2248 (1990)

    Article  MathSciNet  Google Scholar 

  15. Queiros-Conde, D., Vassilicos, J.C.: Intermittency in Turbulence and Other Dynamical Systems, Turbulent Wakes of 3-D Fractal Grids. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  16. Roe, P.L.: Approximate Riemann solvers, parameters vectors and difference schemes. J. Comput. Phys. 43, 357–372 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  17. Seoud, R.E., Vassilicos, J.C.: Dissipation and decay of fractal-generated turbulence. Phys. Fluids 19(10), 105108 (2007)

    Article  Google Scholar 

  18. Shima, E., Kitamura, K.: On new simple low-dissipation scheme of AUSM-family for all speeds. In: 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, AIAA 2009-136 (2009)

    Google Scholar 

  19. Spalart, P.R.: Young-Person’s guide to detached-eddy simulation grids. Technical Report NASA/CR-2001-211032, NASA Langley Research Center, Hampton, VA (2001)

    Google Scholar 

  20. Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. AIAA Paper 92-0439 (1992)

    Google Scholar 

  21. Spalart, P.R., Jou, W.-H., Strelets, M., Allmaras, S.R.: Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: Advances in DNS/LES (Proceedings of 1st AFOSR Int. Conf. on DNS and LES, Louisiana Tech.), pp. 137–147. Greyden Press, Dayton (1997)

    Google Scholar 

  22. Sreenivasan, K.R., Meneveau, C.: The fractal facets of turbulence. J. Fluid Mech. 173, 357–386 (1986)

    Article  MathSciNet  Google Scholar 

  23. Sreenivasan, K.R., Ramshankar, R., Meneveau, C.: Mixing, entrainment and fractal dimensions of surfaces in turbulent flows. Proc. R. Soc. Lond. A 421, 79–108 (1989)

    Article  MATH  Google Scholar 

  24. Vassilicos, J.C., Fung, J.C.H.: The self-similar topology of passive interfaces advected by two-dimensional turbulent-like flows. Phys. Fluids 7(8), 1970 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Weiss, M., Smith, W.A.: Preconditioning applied to variable and constant density flow. AIAA J. 33, 2050–2057 (1995)

    Article  MATH  Google Scholar 

  26. Xia, H.: Dynamic grid detached-eddy simulations for synthetic jet flows. PhD thesis, The University of Sheffield (2005)

    Google Scholar 

  27. Xia, H., Qin, N.: Dynamic grid and unsteady boundary conditions for synthetic jet flow. AIAA 2005-106 (2005)

    Google Scholar 

Download references

Acknowledgements

Fruitful discussions with J.C. Vassilicos and S. Laizet are gratefully acknowledged.

This work was supported by the Engineering and Physical Sciences Research Council through the UK Turbulence Consortium (Grant EP/G069581/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. W. Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Zheng, H.W., Nicolleau, F.C.G.A., Qin, N. (2012). Detached Eddy Simulation for Turbulent Flows in a Pipe with a Snowflake Fractal Orifice. In: Nicolleau, F., Cambon, C., Redondo, JM., Vassilicos, J., Reeks, M., Nowakowski, A. (eds) New Approaches in Modeling Multiphase Flows and Dispersion in Turbulence, Fractal Methods and Synthetic Turbulence. ERCOFTAC Series, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2506-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2506-5_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2505-8

  • Online ISBN: 978-94-007-2506-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics