Skip to main content

Some other basic factors of shear-layer stability

  • Chapter
Physics of Transitional Shear Flows

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 98))

  • 1762 Accesses

Abstract

This chapter describes the results of theoretical, numerical and experimental studies to show how different isolated factors affect the linear stability of parallel and quasi-parallel flows. The palette of these factors includes surface geometry, volume forces, temperature effects, presence of particles in the fluid, wall permeability and compliance. Certainly, this set is not exhaustive. In particular, the stability of magnetohydrodynamic, unsteady flows, etc. is beyond the present scope. However, the set is diverse enough to provide a general view of the basic aspects of the stability analysis as applied to some problems related to engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

References

  • Arnal D, Michel R (eds) (1990) Laminar–turbulent Transition, IUTAM Symposium. Springer–Verlag, Berlin

    Google Scholar 

  • Boiko AV, Kornilov VI (2010) Turbulent boundary-layer control by passive and active methods. Progress and problems. In: Fomin VM (ed) Proc. Ninth Internat. Conf. on Methods of Aerophysical Research, Parallel, Novosibirsk, vol 1, pp 49–50

    Google Scholar 

  • Boiko AV, Nechepurenko YM (2008) Numerical spectral analysis of temporal stability of laminar flows in ducts of constant cross-sections. Comput Maths Math Phys 48:1699–1714

    Article  MathSciNet  Google Scholar 

  • Boyd JP (1999) Chebyshev and Fourier Spectral Methods, 2nd edn. Dover, NY

    Google Scholar 

  • Gaponenko VR, Ivanov AV, Kachanov YS (1995) Experimental study of a swept-wing boundary-layer stability with respect to unsteady disturbances. Thermophys Aeromech 2(4):287–312

    Google Scholar 

  • Gaponov SA, Maslov AA (1971) Stability of compressible boundary layer at subsonic flow velocities. Izv Sib Otd Akad Nauk SSSR, Ser Tekhn Nauk 1(3):24–27

    Google Scholar 

  • Gaster M (1988) Is the dolphin a red herring? In: Liepmann HW, Narasimha R (eds) Turbulent Management and Relaminarization, Springer–Verlag, Berlin, pp 285–304

    Google Scholar 

  • Gray WE (1952) The effect of wing sweep on laminar flow. TM Aero 255, RAE

    Google Scholar 

  • Gregory N, Stuart JT, Walker WS (1955) On the stability of three-dimensional boundary layers with application to the flow due to a rotating disk. Philos Trans R Soc Lond A 248:155–199

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kachanov YS, Tararykin OI (1990) The experimental investigation of stability and receptivity of a swept-wing flow. In: Arnal and Michel (1990), pp 499–509

    Google Scholar 

  • Kachanov YS, Kozlov VV, Levchenko VY (1974) Experimental study on the effect of wall cooling upon laminar boundary-layer stability. Izv Sib Otd Akad Nauk SSSR, Ser Tekhn Nauk 9(8):75–79

    Google Scholar 

  • Kachanov YS, Koptsev DB, Smorodsky BV (2000) Three-dimensional stability of self-similar boundary layer with a negative Hartree parameter. Thermophys Aeromech 7(3):341–351

    Google Scholar 

  • Kerswell RR, Davey A (1996) On the linear instability of elliptic pipe flow. J Fluid Mech 316:307–324

    Article  ADS  MATH  Google Scholar 

  • Kobayashi R, Kohama Y, Kurosawa M (1983) Boundary-layer transition on a rotating cone in axial flow. J Fluid Mech 127:341–352

    Article  ADS  Google Scholar 

  • Kramer MO (1957) Boundary layer stabilization by distributed damping. J Aerosp Sci 24(6):459

    Google Scholar 

  • Lee I, Chun HH, Kulik VM, Boiko AV (2009) Experimental investigation of drag reducing mechanism of compliant coating with optimal viscoelastic properties. In: Johansson AV, Sung HJ (eds) Sixth International Symposium on Turbulence and Shear Flow Phenomena. Seoul National University, Seoul, pp 891–895

    Google Scholar 

  • Lingwood RJ (1995) Absolute instability of the boundary layer on a rotating disk. J Fluid Mech 299:17–33

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Lucey AD, Carpenter PW (1995) Boundary layer instability over compliant wall: Comparison between theory and experiment. Phys Fluids 7(10):2355–2363

    Article  MathSciNet  ADS  Google Scholar 

  • Mack LM (1979) Three-dimensional effects in boundary layer stability. In: Naval hydrodynamics. National Academy of Sciences, Washington, DC, pp 63–76

    Google Scholar 

  • Poll DIA (1985) Some observations on the transition process on the windward face of a long yawed cylinder. J Fluid Mech 150:329–356

    Article  ADS  Google Scholar 

  • Ryzhov OS, Terent’ev ED (1998) Streamwise absolute instability of a three-dimensional boundary layer at high Reynolds numbers. J Fluid Mech 373:111–153

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Saffman PG (1962) On the stability of a laminar flow to a dusty gas. J Fluid Mech 13:120–128

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Schlichting H, Gersten K (2000) Boundary layer theory, 8th edn. Springer–Verlag, Berlin

    MATH  Google Scholar 

  • Schubauer GB, Skramstad HK (1948) Laminar-boundary layer oscillations and transition on a flat plate. TN 909, NACA

    Google Scholar 

  • Squire HB (1933) On the stability for three-dimensional disturbances of viscous fluid between parallel walls. Proc R Soc Lond A 142:621–628

    Article  ADS  MATH  Google Scholar 

  • Tatsumi T, Yoshimura T (1996) Stability of the laminar flow in a rectangular duct. J Fluid Mech 316:307–324

    Article  Google Scholar 

  • Taylor MJ, Peake N (1998) The long-time behaviour of incompressible swept-wing boundary layer subject to impulsive forcing. J Fluid Mech 355:359–381

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Wazzan AR, Okamura TT, Smith AMO (1970) The stability and transition of heated and cooled incompressible laminar boundary layers. In: Grigull V, Hahne E (eds) Fourth Internat. Heat Transfer Conf., Elsevier, Amsterdam, vol 2, paper No. FC-14.

    Google Scholar 

  • Yeo KS (1988) The stability of boundary-layer flow over single and mulri-layer viscoelastic walls. J Fluid Mech 196:359–408

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Yeo KS (1992) The three-dimensional stability of boundary-layer flow over compliant walls. J Fluid Mech 238:537–577

    Article  ADS  MATH  Google Scholar 

Further Reading

  • Arnal D, Michel R (eds) (1990) Laminar–Turbulent Transition, IUTAM Symposium, Springer–Verlag, Berlin

    Google Scholar 

  • Arnal D, Juillen JC, Reneaux J, Gasparian G (1997) Effect of wall suction on leading edge contamination. Aerosp Sci Technol 8:505–517

    Article  Google Scholar 

  • Bippes H, Wiegel M, Bertolotti F (1999) Experiments on the control of crossflow instability with the aid of suction through perforated walls. In: Meier GEA, Viswanath PR (eds) Mechanics of Passive and Active Flow Control, Kluwer, Dordrecht, pp 165–170

    Google Scholar 

  • Carpenter PW (1990) Status of transition delay using compliant walls. In: Bushnell DM, Heffner JN (eds) Viscous Drag Reduction in Boundary Layers, AIAA, New York, pp 79–113

    Google Scholar 

  • Cooke JC (1950) The boundary layer of a class of infinite yawed cylinders. Proc Camb Philos Soc 46:645–648

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Dagenhart JR, Saric WS, Hoos JA, Mousseux MC (1990) Experiments on swept-wing boundary layers. In: Arnal and Michel (1990), pp 369–380

    Google Scholar 

  • Deyhle H, Bippes H (1996) Disturbance growth in an unstable three-dimensional boundary layer and its dependence on environmental conditions. J Fluid Mech 316:73–113

    Article  ADS  Google Scholar 

  • Dovgal AV, Levchenko VY, Timofeev VA (1990) Boundary layer control by a local heating of the wall. In: Arnal and Michel (1990), pp 113–121

    Google Scholar 

  • Ehrenstein U (1996) On the linear stability of channel flow over riblets. Phys Fluids 8(11):3194–3196

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Grek GR, Kozlov VV, Titarenko SV (1996) An experimental study on the influence of riblets on transition. J Fluid Mech 315:31–49

    Article  ADS  Google Scholar 

  • Kazakov AV, Kogan MN, Kuparev VA (1985) On increase of subsonic boundary-layer stability at surface heating close the leading edge. Dokl Akad Nauk 283(2):333–335

    Google Scholar 

  • Lebedev YB, Fomichev VM (1987) Stability of the fluid boundary layer with nonuniform surface temperature distribution. J Eng Phys Thermophys 52(6):948–953

    Google Scholar 

  • Lowell RL, Reshotko E (1974) Numerical study of the stability of a heated water boundary layer. FT AS/TR 73–93, Case Western Reserve University, Cleveland

    Google Scholar 

  • Luchini P (1995) Asymptotic analysis of laminar boundary-layer flow over finely grooved surfaces. Eur J Mech B/Fluids 14(2):169–195

    MathSciNet  MATH  Google Scholar 

  • Luchini P, Manzo M, Pozzi A (1991) Resistance of a grooved surface to parallel flow and cross-flow. J Fluid Mech 228:87–109

    ADS  MATH  Google Scholar 

  • Mack LM (1980) On the stabilization of three-dimensional boundary layers by suction and cooling. In: Eppler R, Fasel H (eds) Laminar–Turbulent Transition, Springer–Verlag, Berlin, IUTAM Symposium, pp 223–238

    Google Scholar 

  • Mack LM (1984) Boundary layer stability theory: Special course on stability and transition of laminar flow. Report 709, AGARD

    Google Scholar 

  • Malik MR, Orszag SA (1980) Comparison of methods for prediction of transition by stability analysis. AIAA J 18(12):1485–1489

    Article  ADS  Google Scholar 

  • Nitschke-Kowsky P, Bippes H (1988) Instability and transition of a three-dimensional boundary layer on a swept flat plate. Phys Fluids 31(4):786–795

    Article  ADS  Google Scholar 

  • Rosenhead L (1963) Laminar boundary layers. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Struminskiy VV, Lebedev YB, Fomichev VM (1986) Effect of streamwise pressure gradient on laminar boundary-layer extension in gas flow. Dokl Akad Nauk 289(4):813–816

    ADS  Google Scholar 

  • Takagi S, Itoh N (1994) Observation of traveling waves in the three-dimensional boundary layer along a yawed cylinder. Fluid Dyn Res 14:167–189

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey V. Boiko .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Boiko, A.V., Dovgal, A.V., Grek, G.R., Kozlov, V.V. (2012). Some other basic factors of shear-layer stability. In: Physics of Transitional Shear Flows. Fluid Mechanics and Its Applications, vol 98. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2498-3_6

Download citation

Publish with us

Policies and ethics