Skip to main content

Excitation of shear flow disturbances

  • Chapter
Physics of Transitional Shear Flows

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 98))

  • 1739 Accesses

Abstract

Turbulence in convectively unstable shear flows subjected to extrinsic dynamics results from amplification of their perturbations, which are generated by external disturbances and usually start to grow far upstream of the turbulent flow region. In the previous chapters, we considered consecutively the transitional events in far-field and near-field regions of disturbance sources and emphasized the importance of the regions for different laminar–turbulent transition scenarios. Now we concentrate on the disturbance excitation in shear layers. This process is referred to as ‘receptivity’ and is the main concern in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

References

  • Aizin LB, Polyakov NF (1979) Generation of the Tollmien-Schlichting wave by sound at an isolated surface roughness. Preprint 17–79, RAS. Sib. Branch Inst. Theoret. Appl. Mech., Novosibirsk. In Russian.

    Google Scholar 

  • Alfredsson PH, Bakchinov AA, Kozlov VV, Matsubara M (1996) Laminar-turbulent transition at a high level of a free stream turbulence. In: Duck and Hall (1996), pp 423–436

    Google Scholar 

  • Asai M, Kaneko M (1998) Experimental investigation of the receptivity of separated flow. In: Proc. Third Internat. Conf. Fluid Mechanics. Beijing Institute of Technology, Beijing, pp 231–237

    Google Scholar 

  • Batchelor GK (1964) Axial flow in trailing line vortices. J Fluid Mech 20:645–658

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Bertolotti FP, Kendall JM (1997) Response of the boundary layer to controlled free-stream vortices of axial form. AIAA Paper 97–2018

    Google Scholar 

  • Bippes H (1999) Basic experiments on transition in three-dimensional boundary layers dominated by crossflow instability. Progr Aerosp Sci 35(4):363–412

    Article  ADS  Google Scholar 

  • Bodonyi RJ, Welch WJC, Duck PW, Tadjfar M (1989) A numerical study of the interaction between unsteady free-stream disturbances and localized variations in surface geometry. J Fluid Mech 209:285–308

    Article  ADS  MATH  Google Scholar 

  • Boiko AV (2000) Receptivity of boundary layers to free stream axial vortices. IB 223–2000 A10, German Aerospace Center (DLR) – Institute for Fluid Mechanics, Göttingen

    Google Scholar 

  • Boiko AV, Dovgal AV, Kozlov VV, Scherbakov VA (1990) Instability and receptivity of a boundary layer close to 2D surface imperfections. Izv Sib Otd Akad Nauk SSSR, Ser Tekhn Nauk 1:50–56

    Google Scholar 

  • Choudhari M, Streett CL (1990) Boundary layer receptivity phenomena in three-dimensional and high-speed boundary layers. AIAA Paper 90–5258

    Google Scholar 

  • Crouch JD (1992) Localized receptivity of boundary layers. Phys Fluids A 4(7):1408–1414

    Article  ADS  MATH  Google Scholar 

  • Dovgal AV, Kozlov VV (1983) Influence of acoustic perturbations on the flow structure in a boundary layer with adverse pressure gradient. Fluid Dyn 18(2):205–209

    Article  ADS  Google Scholar 

  • Dovgal AV, Kozlov VV, Levchenko VY (1980) Experimental investigation into the reaction of a boundary layer to external periodic disturbances. Fluid Dyn 15(4):602–606

    Article  ADS  Google Scholar 

  • Duck PW, Hall P (eds) (1996) Nonlinear instability and transition in three-dimensional boundary layers. Fluid Mechanics and its Application. Kluwer, Dordrecht

    Google Scholar 

  • Gaponenko VR, Ivanov AV, Kachanov YS, Crouch JD (2002) Swept-wing boundary-layer receptivity to surface non-uniformities. J Fluid Mech 461:93–126

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Goldstein ME, Hultgren LS (1989) Boundary layer receptivity to long wave free-stream disturbances. Ann Rev Fluid Mech 21:137–166

    Article  MathSciNet  ADS  Google Scholar 

  • Grek GR, Kozlov VV, Ramazanov MP (1991) Laminar-turbulent transition at high free stream turbulence: Review. Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Tekhn. Nauk 106–138

    Google Scholar 

  • Hill DC (1995) Adjoint systems and their role in the receptivity problem for boundary layer. J Fluid Mech 292:183–204

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Ivanov AV, Kachanov YS, Obolentseva TG, Michalke A (1998) Receptivity of the Blasius boundary layer to surface vibrations. Comparison of theory and experiment. In: Proc. Ninth Internat. Conf. on Methods of Aerophysical Research, vol 1. RAS. Sib. Branch Inst. Theoret. Appl. Mech., Novosibirsk, pp 93–98

    Google Scholar 

  • Kachanov YS (2000) Three-dimensional receptivity of boundary layers. Eur J Mech B/Fluids 19(5):723–744

    Article  MATH  Google Scholar 

  • Kachanov YS, Kozlov VV, Levchenko VY (1979) Occurrence of Tollmien-Schlichting waves in the boundary layer under the effect of external perturbations. Fluid Dyn 13(5):85–94

    Article  Google Scholar 

  • Mischenko DA (2010) Experimental investigation of generation and development of boundary-layer unsteady Görtler-instability modes. Doctoral thesis, Institute of Theroretical and Applied Mechanics SB RAS, Novosibirsk

    Google Scholar 

  • Morkovin MV (1968) Critical evaluation of transition from laminar to turbulent shear layers with emphasis on hypersonically traveling bodies. AFFDL TR 68–149

    Google Scholar 

  • Nishioka M, Morkovin MV (1986) Boundary-layer receptivity to unsteady pressure gradients: Experiments and overview. J Fluid Mech 171:219–261

    Article  ADS  Google Scholar 

  • Saric W, Reed H, Kerschen E (2002) Boundary-layer receptivity to freestream disturbances. Ann Rev Fluid Mech 34:291–319

    Article  MathSciNet  ADS  Google Scholar 

  • Saric WS, Hoos JA, Radeztsky RH (1991) Boundary-layer receptivity of sound with roughness. In: Reda DC, Reed HL, Kobayashi R (eds) Boundary Layer Stability and Transition to Turbulence. ASME, pp 17–22

    Google Scholar 

  • Schmid PJ, Henningson DS (2000) Stability and transition in shear flows. Springer–Verlag, Berlin

    Google Scholar 

  • Westin KJA, Bakchinov AA, Kozlov VV, Alfredsson PH (1998) Experiments on localized disturbances in a flat plate boundary layer. Part 1: The receptivity and evolution of a localized free stream disturbance. Eur J Mech B/Fluids 17(6):823–846

    Article  MATH  Google Scholar 

Further Reading

  • Bakchinov AA, Grek GR, Katasonov MM, Kozlov VV (1997) Experimental investigation of the structure and development characteristics of the localized disturbances in the flat plate boundary layer. Preprint 1–97, RAS. Sib. Branch Inst. Theoret. Appl. Mech., Novosibirsk. In Russian.

    Google Scholar 

  • Balakumar P, Hall P, Malik MR (1990) On the receptivity and non-parallel stability of traveling disturbances in rotating disk flow. ICASE Rep. 90–89

    Google Scholar 

  • Bassom AP, Hall P (1994) The receptivity problem for O(1) wavelength Görtler vortices. Proc R Soc Lond A 446:449–516

    ADS  Google Scholar 

  • Bassom AP, Seddougui SO (1995) Receptivity mechanisms for Görtler vortex modes. Theoret Comput Fluid Dyn 7:317–339

    Article  ADS  MATH  Google Scholar 

  • Berlin S, Henningson DS (1994) A study of boundary layer receptivity to disturbances in the free stream. In: Henningson DS (ed) Bypass Transition – Proceedings from a Mini-Workshop. Royal Institute of Technology, Stockholm, pp 43–49

    Google Scholar 

  • Bertolotti FP (2000) Receptivity of three-dimensional boundary layers to localised wall roughness and suction. Phys Fluids 12(7):1799–1809

    Article  ADS  Google Scholar 

  • Bippes H (1977) Experimente zur Entwicklung der freien Wirbel hinter einem Rechteckflügel. Acta Mech 26:223–245

    Article  ADS  Google Scholar 

  • Bodonyi RJ, Duck PW (1992) Boundary layer receptivity to a wall suction control of Tollmien-Schlichting waves. Phys Fluids A 4(6):1206–1214

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Boiko AV, Chung YM, Sung HJ (1997) Spatial simulation of the instability of channel flow with local suction/blowing. Phys Fluids 9(11):3258–3266

    Article  ADS  Google Scholar 

  • Chernorai VG, Grek GR, Katasonov MM, Kozlov VV (2000) Generation of the localized disturbances by the vibrating surface. Thermophys Aeromech 7(3):329–339

    Google Scholar 

  • Choudhari M (1993) Boundary-layer receptivity due to distributed surface imperfections of a deterministic or random nature. Theoret Comput Fluid Dyn 4:101–117

    Article  ADS  MATH  Google Scholar 

  • Choudhari M, Streett CL (1992) A finite Reynolds-number approach for the prediction of boundary-layer receptivity in localized regions. Phys Fluids A 4(11):2495–2514

    Article  ADS  MATH  Google Scholar 

  • Collis SS, Lele SK (1999) Receptivity to surface roughness near a swept wing leading edge. J Fluid Mech 380:141–168

    Article  ADS  MATH  Google Scholar 

  • Crouch JD (1992) Non-localized receptivity of boundary layers. J Fluid Mech 244:567–581

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Crouch JD (1993a) Receptivity and the evolution of boundary-layer instabilities over short-scale waviness. Phys Fluids A 5(3):561–567

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Crouch JD (1993b) Receptivity of three-dimensional boundary layers. AIAA Paper 93–0074

    Google Scholar 

  • Crouch JD (1994a) Distributed excitation of Tollmien-Schlichting waves by vortical free-stream disturbances. Phys Fluids A 6(1):217–223

    Article  ADS  MATH  Google Scholar 

  • Crouch JD (1994b) Theoretical study on the receptivity of boundary layers. AIAA Paper 94–2223

    Google Scholar 

  • Crouch JD, Bertolotti FP (1992) Nonlocalized receptivity of boundary layers to three-dimensional disturbances. AIAA Paper 92–0740

    Google Scholar 

  • Crouch JD, Spalart PR (1995) A study of nonlinear and nonparallel effects on the localized receptivity of boundary layers. J Fluid Mech 290:29–37

    Article  ADS  MATH  Google Scholar 

  • Denier JP, Hall P, Seddougui SO (1991) On the receptivity problem for Görtler vortices: Vortex motions induced by roughness. Philos Trans R Soc Lond A 335:51–85

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Deyhle H, Bippes H (1996) Disturbance growth in an unstable three-dimensional boundary layer and its dependence on environmental conditions. J Fluid Mech 316:73–113

    Article  ADS  Google Scholar 

  • Dovgal AV, Kozlov VV (1990) Hydrodynamic instability and receptivity of small scale separation regions. In: Arnal D, Michel R (eds) Laminar-Turbulent Transition IUTAM Symposium. Springer, Berlin, pp 523–531

    Google Scholar 

  • Dovgal AV, Kozlov VV, Michalke A (1996) On disturbances excited by a point source in an axisymmetric laminar separation bubble. Eur J Mech B/Fluids 15(4):651–664

    Google Scholar 

  • Duck PW, Hall P (eds) (1996) Nonlinear Instability and Transition in Three-Dimensional Boundary Layers. Fluid Mechanics and its Application. Kluwer, Dordrecht

    Google Scholar 

  • Elofsson PA, Alfredsson PH (2000) An experimental investigation of oblique transition in a Blasius boundary layer flow. Eur J Mech B/Fluids 19(5):615–636

    Article  MATH  Google Scholar 

  • Fasel H (1977) Reaktion von zweidimensionalen, laminaren, inkompressiblen Grenzschichten auf periodische Störungen in der Aussenströmung. Z Angew Math Mech 57:T180–T183

    Google Scholar 

  • Fedorov AV (1984) Excitation of Tollmien-Schlichting waves in a boundary layer by a periodic external source located on the body surface. Fluid Dyn 19(6):888–893

    Article  ADS  Google Scholar 

  • Fedorov AV (1988) Excitation of waves of instability of the secondary flow in a boundary layer on a swept wing. J Appl Mech Tehn Phys 29(5):643–648

    Article  ADS  Google Scholar 

  • Gaponenko  VR, Ivanov  AV, Kachanov  YS (1995) Experimental study of cross-flow instability of a swept-wing boundary layer with respect to travelling waves. In: Kobayashi R (ed) Laminar-Turbulent Transition Springer–Verlag, Berlin, IUTAM Symposium. pp 373–380

    Google Scholar 

  • Gaponenko VR, Ivanov AV, Kachanov YS (1996) Experimental study of 3D boundary-layer receptivity to surface vibration. In: Duck and Hall (1996), pp 389–398

    Google Scholar 

  • Gaster M (1965) On the generation of spatially growing waves in a boundary layer. J Fluid Mech 22:433–441

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Gaster M, Gupta TKS (1993) The generation of disturbances in a boundary layer by wall perturbations: The vibrating ribbon revisited once more. In: Ashpis DE, Gatski TB, Hirsh R (eds) Instabilities and Turbulence in Engineering Flows. Kluwer, Dordrecht, pp 31–50

    Chapter  Google Scholar 

  • Gatski TB, Grosch C (1987) Numerical experiments in boundary-layer receptivity. In: Dwoyer DL, Hussaini MY (eds) Stability of Time Dependent and Spatially Varying Flows. Springer–Verlag, Berlin, pp 82–96

    Google Scholar 

  • Gilev VM, Kozlov VV (1984) Excitation of Tollmien-Schlichting waves in the boundary layer on a vibrating surface. J Appl Mech Tehn Phys 25(6):874–877

    Article  ADS  Google Scholar 

  • Goldstein ME (1983) The evolution of Tollmien-Schlichting waves near a leading edge. J Fluid Mech 127:59–81

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Goldstein ME (1984) Generation of instability waves in flows separating from smooth surfaces. J Fluid Mech 145:71–94

    Article  ADS  MATH  Google Scholar 

  • Goldstein ME (1985) Scattering of acoustic waves into Tollmien-Schlichting waves by small streamwise variations in surface geometry. J Fluid Mech 154:509–529

    Article  ADS  MATH  Google Scholar 

  • Goldstein ME, Hultgren LS (1989) Boundary layer receptivity to long wave free-stream disturbances. Ann Rev Fluid Mech 21:137–166

    Article  MathSciNet  ADS  Google Scholar 

  • Goldstein ME, Leib SJ, Cowley SJ (1987) Generation of Tollmien-Schlichting waves on interactive marginally separated flows. J Fluid Mech 181:485–517

    Article  ADS  MATH  Google Scholar 

  • Hall P (1990) Görtler vortices in growing boundary layers: The leading edge receptivity problem, linear growth and the nonlinear breakdown stage. Mathematika 37:151–189

    Article  MathSciNet  MATH  Google Scholar 

  • Heinrich RA, Choudhari M, Kerschen EJ (1988) A comparison of boundary layer receptivity mechanisms. AIAA Paper 88–3758

    Google Scholar 

  • Herbert T, Lin N (1993) Studies of boundary-layer receptivity with parabolized stability equations. AIAA Paper 93–3053

    Google Scholar 

  • Hultgren LS, Gustavsson LH (1981) Algebraic growth of disturbances in a laminar boundary layer. Phys Fluids 24(6):1000–1004

    Article  ADS  MATH  Google Scholar 

  • Ivanov AV, Kachanov YS, Koptsev DB (1994) An experimental investigation of instability wave excitation in three-dimensional boundary layer at acoustic wave scattering on a vibrator. Thermophys Aeromech 4(4):359–372

    Google Scholar 

  • Kachanov YS (1996) Generation, development and interaction of instability modes in swept-wing boundary layer. In: Duck and Hall (1996), pp 115–132

    Google Scholar 

  • Kachanov YS, Kozlov VV, Levchenko VY (1975) Generation and development of small-amplitude disturbances in a laminar boundary layer in the presence of an acoustic field. Izv Sib Otd Akad Nauk SSSR, Ser Tekhn Nauk 3(13):18–26

    Google Scholar 

  • Kachanov YS, Kozlov VV, Levchenko VY (1979) The development of small-amplitude oscillations in a laminar boundary layer. Fluid Mech – Soviet Res 8(2):152–156

    Google Scholar 

  • Kachanov YS, Kozlov VV, Levchenko VY, Maksimov VP (1979b) Transformation of external disturbances into the boundary layer waves. In: Proc. Sixth Intern. Conf. on Numerical Methods in Fluid Dyn., Springer–Verlag, Berlin, Lecture Notes in Physics, 19, pp 299–307

    Chapter  Google Scholar 

  • Kachanov YS, Kozlov VV, Levchenko VY (1982) Origin of Turbulence in Boundary Layer. Nauka. Sib. Otd., Novosibirsk

    Google Scholar 

  • Kerschen EJ (1991) Linear and non-linear receptivity to vortical freestream disturbances. In: Reda DC, Reed HL, Kobayashi R (eds) Boundary Layer Stability and Transition to Turbulence. ASME, pp 43–48

    Google Scholar 

  • King RA, Breuer KS (2001) Acoustic receptivity and evolution of two-dimensional and oblique disturbances in a Blasius boundary layer. J Fluid Mech 432:69–90

    ADS  MATH  Google Scholar 

  • Kozlov VV, Ryzhov OS (1990) Receptivity of boundary layers: Asymptotic theory and experiment. Proc R Soc Lond A 429:341–373

    Article  MathSciNet  ADS  Google Scholar 

  • Leehey P, Shapiro P (1980) Leading edge effect in laminar boundary layer excitation by sound. In: Eppler R, Fasel H (eds) Laminar–Turbulent Transition, Springer–Verlag, Berlin, IUTAM Symposium, pp 321–331

    Google Scholar 

  • Lindors M, Laine S (1976) Numerical solution of the Navier-Stokes equations for unsteady boundary-layer flows past a wave-like bulge on a flat plate. Lect Notes Phys 59:293–299

    Article  ADS  Google Scholar 

  • Luchini P, Bottaro A (1998) Görtler vortices: A backward in time approach to the receptivity problem. J Fluid Mech 363:1–23

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Maksimov VP (1979) Origin of Tollmien-Schlichting waves in oscillating boundary layers. In: Levchenko VY (ed) Development of Disturbances in Boundary Layer. RAS. Sib. Branch Inst. Theoret. Appl. Mech., Novosibirsk, pp 68–75. In Russian.

    Google Scholar 

  • Michalke A (1993) On the receptivity of a compressible two-dimensional vortex sheet close to a wall for various types of excitation. Eur J Mech B/Fluids 12(4):421–445

    MathSciNet  MATH  Google Scholar 

  • Michalke A (1995) Receptivity of axisymmetric boundary layers due to excitation by a Dirac point source at the wall. Eur J Mech B/Fluids 14(4):373–393

    MathSciNet  MATH  Google Scholar 

  • Michalke A (1997) Excitation of small disturbances by a Dirac line source at the wall and their growth in a decelerated laminar boundary layer. Eur J Mech B/Fluids 16(1):17–37

    MathSciNet  MATH  Google Scholar 

  • Michalke A, Al-Maaitah AA (1992) On the receptivity of the unstable wall boundary layer along a surface hump excited by a 2-D Dirac source at the wall. Eur J Mech B/Fluids 11(5):521–542

    MATH  Google Scholar 

  • Müller B, Bippes H (1988) Experimental study of instability modes in a three-dimensional boundary layer. In: AGARD-CP-438 Fluid Dynamics of Three-Dimensional Turbulent Shear Flows and Transition, Chismet, Turkey, pp 13.1–13.15

    Google Scholar 

  • Murdock JW (1980) The generation of Tollmien-Schlichting waves by a sound wave. Proc R Soc Lond A 372:517–534

    Article  ADS  Google Scholar 

  • Ng LL, Crouch JD (1999) Roughness-induced receptivity to crossflow vortices on a swept wing. Phys Fluids 11(2):432–438

    Article  ADS  MATH  Google Scholar 

  • Polyakov NF (1975) Induction of hydrodynamic waves in laminar boundary layer by streamwise acoustic field. In: Proc. Symp. on Physics of Acousto-Hydrodynamic Phenomena. Nauka, Moscow, pp 216–223. In Russian.

    Google Scholar 

  • Rogler HL, Reshotko E (1975) Disturbances in a boundary layer introduced by a low intensity array of vortices. SIAM J Appl Math 28(2):431–462

    Article  ADS  MATH  Google Scholar 

  • Rothmayer AP, Smith FT (1998) High Reynolds number asymptotic theories. In: Johnson RW (ed) The Handbook of Fluid Dynamics, Springer–Verlag, Berlin, chap 23–25 pp 23.1–25.26.

    Google Scholar 

  • Ruban AI (1985) On the generation of Tollmien-Schlichting waves by sound. Fluid Dyn 19(5):709–716

    Article  ADS  Google Scholar 

  • Saric W, Reed H, Kerschen E (1994) Leading edge receptivity to sound: Experiments, DNS, and theory. AIAA Paper 94–2222

    Google Scholar 

  • Saric WS (1990) Low-speed experiments: Requirements for stability measurements. In: Hussaini MY, Voight RG (eds) Instability and Transition, Springer–Verlag, Berlin, ICASE/NASA LaRC Series, vol 1, pp 162–172

    Google Scholar 

  • Saric WS, White EB, Reed HL (1999) Boundary-layer receptivity to freestream disturbances and its role in transition. AIAA Paper 99–3788

    Google Scholar 

  • Shapiro  PJ (1977)  The  influence  of  sound  upon  laminar  boundary  layer  instability. Tech. Rep. 83458-83560-1, Mass. Inst. Technol., Cambridge, Acoustic and Vibration Lab., See also NTIS AD-A046057.

    Google Scholar 

  • Sidorenko NV, Erofeev EA (1985) Interaction  of  vortex  disturbances  and  boundary layer on blunt bodies. In: Kozlov VV (ed) Laminar–Turbulent Transition, Springer–Verlag, Berlin, IUTAM Symposium, pp 261–266

    Google Scholar 

  • Spalart PR (1993) Numerical study of transition induced by suction devices. In: So RMC, Speziale CG, Launder BE (eds) Near-Wall Turbulent Flows. Elsevier, Amsterdam, pp 849–858

    Google Scholar 

  • Spiridonov AN, Chernoray VG (2000) Generation and development of disturbances by a surface vibration in a boundary layer with a pressure gradient. In: Proc. Seventh Internat. Conf. Stability of Homogeneous and Heterogeneous Fluids, Novosibirsk, pp 165–167. In Russian.

    Google Scholar 

  • Takagi S, Saric WS, Radeztsky RH (1991) Effect of sound and micro-sized roughness on crossflow dominated transition. Bull Amer Phys Soc 36(10):2630

    Google Scholar 

  • Tam CKW (1978) Excitation of instability waves in a two-dimensional shear layer by sound. J Fluid Mech 89:357–371

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Tam CKW (1981) The excitation of Tollmien-Schlichting waves in low subsonic boundary layers by free stream sound waves. J Fluid Mech 109:483–501

    Article  ADS  MATH  Google Scholar 

  • Terent’ev ED (1984) A linear problem on a vibrator oscillating harmonically at supercritical frequencies in a subsonic boundary layer. Prikl Mat Mekh 48(2):264–272

    Google Scholar 

  • Thomas ASW, Lekoudis SG (1978) Sound and a Tollmien–Schlichting wave in a Blasius boundary layer. Phys Fluids 21(11):2112–2113

    Article  ADS  Google Scholar 

  • Tumin A (1996) Receptivity of pipe Poiseuille flow. J Fluid Mech 315:119–137

    Article  ADS  MATH  Google Scholar 

  • Wu X (2001) Receptivity of boundary layers with distributed roughness to vortical and acoustic disturbances: A second-order asymptotic theory and comparison with experiments. J Fluid Mech 431:91–133

    Article  ADS  MATH  Google Scholar 

  • Yang ZY, Voke PR (1991) Numerical simulation of transition under turbulence. Tech. Rep. ME–FD/91.01, Department of Mechanical Engineering, University of Surrey, U.K.

    Google Scholar 

  • Zavolskiy NA, Reutov VP, Rybushkina GV (1983) Excitation of Tollmien–Schlichting waves by acoustic and vortex disturbance scattering in boundary layer on a wavy surface. J Appl Mech Tehn Phys 24(3):355–361

    Article  ADS  Google Scholar 

  • Zhigulev VN, Tumin AM (1987) Onset of turbulence. Dynamical theory of excitation and development of instabilities in boundary layers. Nauka. Sib. Otd., Novosibirsk. In Russian.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey V. Boiko .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Boiko, A.V., Dovgal, A.V., Grek, G.R., Kozlov, V.V. (2012). Excitation of shear flow disturbances. In: Physics of Transitional Shear Flows. Fluid Mechanics and Its Applications, vol 98. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2498-3_10

Download citation

Publish with us

Policies and ethics