Skip to main content

Age-Related Variation in DNA Methylation

  • Chapter
  • First Online:

Abstract

Methylation is a ubiquitous, naturally occurring modification of DNA in mammalian cells that mediates stable repression of gene expression in epigenetically regulated genes, and plays diverse other roles such as regulation of chromosome structure and silencing of endogenous retrotransposons. DNA methylation patterns are generally stable in the short term but show prominent changes in aging cells and tissues including gains of methylation at previously protected promoter regions and losses of methylation genome wide. These age-related methylation changes remain mechanistically mysterious but are conserved from mouse to man, and are likely caused by infidelity in replication of the epigenome over time. Because of the link between DNA methylation and gene expression, these changes result in a mosaic epigenome in aged cells that could underlie diseases of aging such as cancer and atherosclerosis. Maintaining the health of the epigenome is worth investigating as a strategy to prevent age-related diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  PubMed  CAS  Google Scholar 

  2. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254

    Article  PubMed  CAS  Google Scholar 

  3. Migeon BR, Axelman J, Beggs AH (1988) Effect of ageing on reactivation of the human x-linked hprt locus [see comments]. Nature 335:93–96

    Article  PubMed  CAS  Google Scholar 

  4. Pagani F, Toniolo D, Vergani C (1990) Stability of DNA methylation of X-chromosome genes during aging. Somat Cell Mol Genet 16:79–84

    Article  PubMed  CAS  Google Scholar 

  5. Estecio MR, Issa JP (2010) Dissecting DNA hypermethylation in cancer. FEBS Lett 585:2078–2086

    Article  PubMed  Google Scholar 

  6. Shen L, Kondo Y, Guo Y, Zhang J, Zhang L, Ahmed S et al (2007) Genome-wide profiling of DNA methylation reveals a class of normally methylated CpG island promoters. PLoS Genet 3:2023–2036

    Article  PubMed  CAS  Google Scholar 

  7. Bruniquel D, Schwartz RH (2003) Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process. Nat Immunol 4:235–240

    Article  PubMed  CAS  Google Scholar 

  8. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935

    Article  PubMed  CAS  Google Scholar 

  9. Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466:1129–1133

    Article  PubMed  CAS  Google Scholar 

  10. Wilson VL, Jones PA (1983) Dna methylation decreases in aging but not in immortal cells. Science 220:1055–1057

    Article  PubMed  CAS  Google Scholar 

  11. Wilson VL, Smith RA, Ma S, Cutler RG (1987) Genomic 5-methyldeoxycytidine decreases with age. J Biol Chem 262:9948–9951

    PubMed  CAS  Google Scholar 

  12. Fuke C, Shimabukuro M, Petronis A, Sugimoto J, Oda T, Miura K et al (2004) Age related changes in 5-methylcytosine content in human peripheral leukocytes and placentas: an HPLC-based study. Ann Hum Genet 68:196–204

    Article  PubMed  CAS  Google Scholar 

  13. Bollati V, Schwartz J, Wright R, Litonjua A, Tarantini L, Suh H et al (2009) Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech Ageing Dev 130:234–239

    Article  PubMed  CAS  Google Scholar 

  14. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322

    Article  PubMed  CAS  Google Scholar 

  15. Lapeyre JN, Becker FF (1979) 5-Methylcytosine content of nuclear DNA during chemical hepatocarcinogenesis and in carcinomas which result. Biochem Biophys Res Commun 87:698–705

    Article  PubMed  CAS  Google Scholar 

  16. Kren BT, Trembley JH, Steer CJ (1996) Alterations in mRNA stability during rat liver regeneration. Am J Physiol 270:G763–G777

    PubMed  CAS  Google Scholar 

  17. Issa JP, Ottaviano YL, Celano P, Hamilton SR, Davidson NE, Baylin SB (1994) Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nat Genet 7:536–540

    Article  PubMed  CAS  Google Scholar 

  18. Ahuja N, Li Q, Mohan AL, Baylin SB, Issa JPJ (1998) Aging and DNA methylation in colorectal mucosa and cancer. Cancer Res 58:5489–5494

    PubMed  CAS  Google Scholar 

  19. Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JPJ (1999) CpG Island methy­lator phenotype in colorectal cancer. Proc Natl Acad Sci USA 96:8681–8686

    Article  PubMed  CAS  Google Scholar 

  20. Waki T, Tamura G, Sato M, Motoyama T (2003) Age-related methylation of tumor suppressor and tumor-related genes: an analysis of autopsy samples. Oncogene 22:4128–4133

    Article  PubMed  CAS  Google Scholar 

  21. Shibata D (2009) Inferring human stem cell behaviour from epigenetic drift. J Pathol 217:199–205

    Article  PubMed  CAS  Google Scholar 

  22. Maegawa S, Hinkal G, Kim HS, Shen L, Zhang L, Zhang J et al (2010) Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res 20:332–340

    Article  PubMed  CAS  Google Scholar 

  23. Hernandez DG, Nalls MA, Gibbs JR, Arepalli S, Van der Brug M, Chong S et al (2011) Distinct DNA methylation changes highly correlated with chronological age in the human brain. Hum Mol Genet 20:1164–1172

    Article  PubMed  CAS  Google Scholar 

  24. Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL et al (2009) Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet 5:e1000602

    Article  PubMed  Google Scholar 

  25. Gronniger E, Weber B, Heil O, Peters N, Stab F, Wenck H et al (2010) Aging and chronic sun exposure cause distinct epigenetic changes in human skin. PLoS Genet 6:e1000971

    Article  PubMed  Google Scholar 

  26. Rakyan VK, Down TA, Maslau S, Andrew T, Yang TP, Beyan H et al (2010) Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res 20:434–439

    Article  PubMed  CAS  Google Scholar 

  27. Estecio MR, Gallegos J, Vallot C, Castoro RJ, Chung W, Maegawa S et al (2010) Genome architecture marked by retrotransposons modulates predisposition to DNA methylation in cancer. Genome Res 20:1369–1382

    Article  PubMed  CAS  Google Scholar 

  28. Takeshima H, Yamashita S, Shimazu T, Niwa T, Ushijima T (2009) The presence of RNA polymerase II, active or stalled, predicts epigenetic fate of promoter CpG islands. Genome Res 19:1974–1982

    Article  PubMed  CAS  Google Scholar 

  29. Hanawalt PC, Spivak G (2008) Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol 9:958–970

    Article  PubMed  CAS  Google Scholar 

  30. Boumber YA, Kondo Y, Chen X, Shen L, Guo Y, Tellez C et al (2008) An Sp1/Sp3 binding polymorphism confers methylation protection. PLoS Genet 4:e1000162

    Article  PubMed  Google Scholar 

  31. Williams K, Christensen J, Pedersen MT, Johansen JV, Cloos PA, Rappsilber J et al (2011) TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473:343–348

    Article  PubMed  CAS  Google Scholar 

  32. Issa JP, Ahuja N, Toyota M, Bronner MP, Brentnall TA (2001) Accelerated age-related CpG island methylation in ulcerative colitis. Cancer Res 61:3573–3577

    PubMed  CAS  Google Scholar 

  33. Eads CA, Lord RV, Kurumboor SK, Wickramasinghe K, Skinner ML, Long TI et al (2000) Fields of aberrant CpG island hypermethylation in Barrett’s esophagus and associated adenocarcinoma. Cancer Res 60:5021–5026

    PubMed  CAS  Google Scholar 

  34. Maekita T, Nakazawa K, Mihara M, Nakajima T, Yanaoka K, Iguchi M et al (2006) High levels of aberrant DNA methylation in Helicobacter pylori-infected gastric mucosae and its possible association with gastric cancer risk. Clin Cancer Res 12:989–995

    Article  PubMed  CAS  Google Scholar 

  35. Shen L, Ahuja N, Shen Y, Habib NA, Toyota M, Rashid A et al (2002) DNA methylation and environmental exposures in human hepatocellular carcinoma. J Natl Cancer Inst 94:755–761

    Article  PubMed  CAS  Google Scholar 

  36. Niwa T, Tsukamoto T, Toyoda T, Mori A, Tanaka H, Maekita T et al (2010) Inflammatory Processes Triggered by Helicobacter pylori Infection Cause Aberrant DNA Methylation in Gastric Epithelial Cells. Cancer Res 70:1430–1440

    Article  PubMed  CAS  Google Scholar 

  37. Hahn MA, Hahn T, Lee DH, Esworthy RS, Kim BW, Riggs AD et al (2008) Methylation of polycomb target genes in intestinal cancer is mediated by inflammation. Cancer Res 68:10280–10289

    Article  PubMed  CAS  Google Scholar 

  38. Mason JB (2003) Biomarkers of nutrient exposure and status in one-carbon (methyl) metabolism. J Nutr 133:941S–947S

    PubMed  CAS  Google Scholar 

  39. Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23:5293–5300

    Article  PubMed  CAS  Google Scholar 

  40. Wallace K, Grau MV, Levine AJ, Shen L, Hamdan R, Chen X et al (2010) Association between folate levels and CpG Island hypermethylation in normal colorectal mucosa. Cancer Prev Res (Phila) 3:1552–1564

    Article  CAS  Google Scholar 

  41. Protiva P, Mason JB, Liu Z, Hopkins ME, Nelson C, Marshall JR et al (2011) Altered folate availability modifies the molecular environment of the human colorectum: implications for colorectal carcinogenesis. Cancer Prev Res (Phila) 4:530–543

    Article  CAS  Google Scholar 

  42. Chambers SM, Shaw CA, Gatza C, Fisk CJ, Donehower LA, Goodell MA (2007) Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol 5:e201

    Article  PubMed  Google Scholar 

  43. Taby R, Issa JP (2010) Cancer epigenetics. CA Cancer J Clin 60:376–392

    Article  PubMed  Google Scholar 

  44. Kim J, Kim JY, Song KS, Lee YH, Seo JS, Jelinek J et al (2007) Epigenetic changes in estrogen receptor beta gene in atherosclerotic cardiovascular tissues and in-vitro vascular ­senescence. Biochim Biophys Acta 1772:72–80

    PubMed  CAS  Google Scholar 

  45. Post WS, Goldschmidt-Clermont PJ, Wilhide CC, Heldman AW, Sussman MS, Ouyang P et al (1999) Methylation of the estrogen receptor gene is associated with aging and atherosclerosis in the cardiovascular system. Cardiovasc Res 43:985–991

    Article  PubMed  CAS  Google Scholar 

  46. Laird PW, Jackson-Grusby L, Fazeli A, Dickinson SL, Jung WE, Li E et al (1995) Suppression of intestinal neoplasia by DNA hypomethylation. Cell 81:197–205

    Article  PubMed  CAS  Google Scholar 

  47. Linhart HG, Lin H, Yamada Y, Moran E, Steine EJ, Gokhale S et al (2007) Dnmt3b promotes tumorigenesis in vivo by gene-specific de novo methylation and transcriptional silencing. Genes Dev 21:3110–3122

    Article  PubMed  CAS  Google Scholar 

  48. Shen L, Kondo Y, Rosner GL, Xiao L, Hernandez NS, Vilaythong J et al (2005) MGMT promoter methylation and field defect in sporadic colorectal cancer. J Natl Cancer Inst 97:1330–1338

    Article  PubMed  CAS  Google Scholar 

  49. Issa JP (2008) Cancer prevention: epigenetics steps up to the plate. Cancer Prev Res (Phila Pa) 1:219–222

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Issa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Issa, JP. (2012). Age-Related Variation in DNA Methylation. In: Michels, K. (eds) Epigenetic Epidemiology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2495-2_11

Download citation

Publish with us

Policies and ethics