Skip to main content

The Utility of Twins for Epigenetic Analysis

  • Chapter
  • First Online:

Abstract

Twin studies have played an important role in our understanding of individual variation for over a century. The strength of these studies lies in the capacity to perfectly control for inter-individual genetic variation through the use of monozygotic (MZ) twin pairs. Despite their genetic identity, MZ twins often show phenotypic variability, presumably in response to different environmental exposures. Given that epigenetic mechanisms are widely believed to be the mediators of the influence of environmental factors on the underlying genome, it is not surprising that the use of twins in epigenetic research is increasingly recognised as an important approach to help unravel the complexities associated with human development and disease. In addition, the strategic use of twins in epigenetic studies has revealed the importance of genetic factors and both in utero and postnatal environments to the establishment and maintenance of the human epigenome. Finally, twin studies are generating compelling evidence linking epigenetic disruption to the disease-associated risk in humans.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

MZ:

monozygotic

DZ:

dizygotic

DNA:

deoxyribonucleic acid

EEA:

equal environments assumption

2D:

two dimensional

ANOVA:

analysis of variance

ICC:

intraclass correlation

RRBS:

reduced representation bisulphite sequencing

SLE:

systemic lupus erythematosus

RA:

rheumatoid arthritis

DM:

dermatomyositis

RNA:

ribonucleic acid

5MeC:

5- methylcytosine

CBMC:

cord blood mononuclear cells

HUVEC:

human umbilical vein endothelial cells

AIMS:

amplification of inter-methylated sites

DC:

dichorionic (two placentas)

MC:

monochorionic

CGI:

CpG island region (enriched for CpG dinucleotides) 3′UTRnon protein coding 3′ untranslated region of RNA transcript

DMR:

differentially methylated regions

DRD2:

dopaminergic receptor D2

COMT:

catechol-O-methyltransferase

MSRDA:

methylation sensitive representational difference analysis

PPIEL:

Peptidylprolyl isomerise E-like

SMS:

Spermine synthase

References

  1. Hasler R, Begun A, Freitag-Wolf S, Kerick M, Mah N, Zvirbliene A et al (2009) Genetic control of global gene expression levels in the intestinal mucosa: a human twin study. Physiol Genomics 38:73–79

    Article  PubMed  Google Scholar 

  2. Sharma K (2005) Genetic epidemiology of epilepsy: a twin study. Neurol India 53:93–98

    Article  PubMed  Google Scholar 

  3. Tan Q, Christensen K, Christiansen L, Frederiksen H, Bathum L, Dahlgaard J et al (2005) Genetic dissection of gene expression observed in whole blood samples of elderly Danish twins. Hum Genet 117:267–274

    Article  PubMed  Google Scholar 

  4. Gordon L, Joo JH, Andronikos R, Ollikainen M, Wallace EM, Umstad MP et al (2011) Clues to the effect of intrauterine milieu on gene expression from a study of two tissues from neonatal monozygotic twins. Epigenetics 6:579–592

    Article  PubMed  Google Scholar 

  5. Gartner K (1990) A third component causing random variability beside environment and genotype. A reason for the limited success of a 30 year long effort to standardize laboratory animals? Lab Anim 24:71–77

    Article  PubMed  CAS  Google Scholar 

  6. Kerkel K, Spadola A, Yuan E, Kosek J, Jiang L, Hod E et al (2008) Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation. Nat Genet 40:904–908

    Article  PubMed  CAS  Google Scholar 

  7. Schalkwyk LC, Meaburn EL, Smith R, Dempster EL, Jeffries AR, Davies MN et al (2010) Allelic skewing of DNA methylation is widespread across the genome. Am J Hum Genet 86:196–212

    Article  PubMed  CAS  Google Scholar 

  8. Fuke C, Shimabukuro M, Petronis A, Sugimoto J, Oda T, Miura K et al (2004) Age related changes in 5-methylcytosine content in human peripheral leukocytes and placentas: an HPLC-based study. Ann Hum Genet 68:196–204

    Article  PubMed  CAS  Google Scholar 

  9. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102:10604–10609

    Article  PubMed  CAS  Google Scholar 

  10. Bell JT, Spector TD (2011) A twin approach to unraveling epigenetics. Trends Genet 27:116–125

    Article  PubMed  CAS  Google Scholar 

  11. Wong CC, Caspi A, Williams B, Craig IW, Houts R, Ambler A et al (2010) A longitudinal study of epigenetic variation in twins. Epigenetics 5:516–526

    Article  PubMed  CAS  Google Scholar 

  12. Ollikainen M, Smith KR, Joo EJ, Ng HK, Andronikos R, Novakovic B et al (2010) DNA methylation analysis of multiple tissues from newborn twins reveals both genetic and intrauterine components to variation in the human neonatal epigenome. Hum Mol Genet 19:4176–4188

    Article  PubMed  CAS  Google Scholar 

  13. Bjornsson HT, Sigurdsson MI, Fallin MD, Irizarry RA, Aspelund T, Cui H et al (2008) Intra-individual change over time in DNA methylation with familial clustering. Jama 299:2877–2883

    Article  PubMed  CAS  Google Scholar 

  14. Talens RP, Boomsma DI, Tobi EW, Kremer D, Jukema JW, Willemsen G et al (2010) Variation, patterns, and temporal stability of DNA methylation: considerations for epigenetic epidemiology. FASEB J 24:3135–3144

    Article  PubMed  CAS  Google Scholar 

  15. Li L, Wang L, Le F, Liu X, Yu P, Sheng J et al (2011) Evaluation of DNA methylation status at differentially methylated regions in IVF-conceived newborn twins. Fertil Steril 95:1975–1979

    Article  PubMed  CAS  Google Scholar 

  16. Zwijnenburg PJ, Meijers-Heijboer H, Boomsma DI (2010) Identical but not the same: the value of discordant monozygotic twins in genetic research. Am J Med Genet B Neuropsychiatr Genet 153B:1134–1149

    PubMed  CAS  Google Scholar 

  17. Sakuntabhai A, Ruiz-Perez V, Carter S, Jacobsen N, Burge S, Monk S et al (1999) Mutations in ATP2A2, encoding a Ca2+ pump, cause Darier disease. Nat Genet 21:271–277

    Article  PubMed  CAS  Google Scholar 

  18. Robertson SP, Thompson S, Morgan T, Holder-Espinasse M, Martinot-Duquenoy V, Wilkie AO et al (2006) Postzygotic mutation and germline mosaicism in the otopalatodigital syndrome spectrum disorders. Eur J Hum Genet 14:549–554

    Article  PubMed  CAS  Google Scholar 

  19. Kondo S, Schutte BC, Richardson RJ, Bjork BC, Knight AS, Watanabe Y et al (2002) Mutations in IRF6 cause Van der Woude and popliteal pterygium syndromes. Nat Genet 32:285–289

    Article  PubMed  CAS  Google Scholar 

  20. Smith AC, Rubin T, Shuman C, Estabrooks L, Aylsworth AS, McDonald MT et al (2006) New chromosome 11p15 epigenotypes identified in male monozygotic twins with Beckwith-Wiedemann syndrome. Cytogenet Genome Res 113:313–317

    Article  PubMed  CAS  Google Scholar 

  21. den Enden AT Helderman-van, Maaswinkel-Mooij PD, Hoogendoorn E, Willemsen R, Maat-Kievit JA, Losekoot M et al (1999) Monozygotic twin brothers with the fragile X syndrome: different CGG repeats and different mental capacities. J Med Genet 36:253–257

    Google Scholar 

  22. Kruyer H, Mila M, Glover G, Carbonell P, Ballesta F, Estivill X (1994) Fragile X syndrome and the (CGG)n mutation: two families with discordant MZ twins. Am J Hum Genet 54:437–442

    PubMed  CAS  Google Scholar 

  23. Bonilla E, Younger DS, Chang HW, Tantravahi U, Miranda AF, Medori R et al (1990) Partial dystrophin deficiency in monozygous twin carriers of the Duchenne gene discordant for clinical myopathy. Neurology 40:1267–1270

    PubMed  CAS  Google Scholar 

  24. Biousse V, Brown MD, Newman NJ, Allen JC, Rosenfeld J, Meola G et al (1997) De novo 14484 mitochondrial DNA mutation in monozygotic twins discordant for Leber’s hereditary optic neuropathy. Neurology 49:1136–1138

    PubMed  CAS  Google Scholar 

  25. Blakely EL, He L, Taylor RW, Chinnery PF, Lightowlers RN, Schaefer AM et al (2004) Mitochondrial DNA deletion in “identical” twin brothers. J Med Genet 41:e19

    Article  PubMed  CAS  Google Scholar 

  26. Bruder CE, Piotrowski A, Gijsbers AA, Andersson R, Erickson S, de Diaz ST et al (2008) Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles. Am J Hum Genet 82:763–771

    Article  PubMed  CAS  Google Scholar 

  27. Bakaysa SL, Mucci LA, Slagboom PE, Boomsma DI, McClearn GE, Johansson B et al (2007) Telomere length predicts survival independent of genetic influences. Aging Cell 6:769–774

    Article  PubMed  CAS  Google Scholar 

  28. Slagboom PE, Droog S, Boomsma DI (1994) Genetic determination of telomere size in humans: a twin study of three age groups. Am J Hum Genet 55:876–882

    PubMed  CAS  Google Scholar 

  29. Bennett CM, Boye E, Neufeld EJ (2008) Female monozygotic twins discordant for hemophilia A due to nonrandom X-chromosome inactivation. Am J Hematol 83:778–780

    Article  PubMed  CAS  Google Scholar 

  30. Willemsen R, Olmer R, De Diego Otero Y, Oostra BA (2000) Twin sisters, monozygotic with the fragile X mutation, but with a different phenotype. J Med Genet 37:603–604

    Article  PubMed  CAS  Google Scholar 

  31. Zneimer SM, Schneider NR, Richards CS (1993) In situ hybridization shows direct evidence of skewed X inactivation in one of monozygotic twin females manifesting Duchenne muscular dystrophy. Am J Med Genet 45:601–605

    Article  PubMed  CAS  Google Scholar 

  32. Javierre BM, Fernandez AF, Richter J, Al-Shahrour F, Martin-Subero JI, Rodriguez-Ubreva J et al (2010) Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res 20:170–179

    Article  PubMed  CAS  Google Scholar 

  33. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc 57:289–300

    Google Scholar 

  34. Kaminsky ZA, Tang T, Wang SC, Ptak C, Oh GH, Wong AH et al (2009) DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet 41:240–245

    Article  PubMed  CAS  Google Scholar 

  35. Baranzini SE, Mudge J, van Velkinburgh JC, Khankhanian P, Khrebtukova I, Miller NA et al (2010) Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature 464:1351–1356

    Article  PubMed  CAS  Google Scholar 

  36. Shur N (2009) The genetics of twinning: from splitting eggs to breaking paradigms. Am J Med Genet C Semin Med Genet 151C:105–109

    Article  PubMed  Google Scholar 

  37. Kaminsky Z, Petronis A, Wang SC, Levine B, Ghaffar O, Floden D et al (2008) Epigenetics of personality traits: an illustrative study of identical twins discordant for risk-taking behavior. Twin Res Hum Genet 11:1–11

    Article  PubMed  Google Scholar 

  38. Spector TD (2000) Advances in twin and sib-pair analysis. Greenwich Medical Media

    Google Scholar 

  39. Schneider E, Pliushch G, El Hajj N, Galetzka D, Puhl A, Schorsch M et al (2010) Spatial, temporal and interindividual epigenetic variation of functionally important DNA methylation patterns. Nucleic Acids Res 38:3880–3890

    Article  PubMed  CAS  Google Scholar 

  40. Abecasis GR, Cookson WO (2000) GOLD–graphical overview of linkage disequilibrium. Bioinformatics 16:182–183

    Article  PubMed  CAS  Google Scholar 

  41. Heijmans BT, Kremer D, Tobi EW, Boomsma DI, Slagboom PE (2007) Heritable rather than age-related environmental and stochastic factors dominate variation in DNA methylation of the human IGF2/H19 locus. Hum Mol Genet 16:547–554

    Article  PubMed  CAS  Google Scholar 

  42. Petronis A, Gottesman II, Kan P, Kennedy JL, Basile VS, Paterson AD et al (2003) Monozygotic twins exhibit numerous epigenetic differences: clues to twin discordance? Schizophr Bull 29:169–178

    PubMed  Google Scholar 

  43. Mill J, Dempster E, Caspi A, Williams B, Moffitt T, Craig I (2006) Evidence for monozygotic twin (MZ) discordance in methylation level at two CpG sites in the promoter region of the catechol-O-methyltransferase (COMT) gene. Am J Med Genet B Neuropsychiatr Genet 141B:421–425

    Article  PubMed  CAS  Google Scholar 

  44. Mitchell MM, Lleo A, Zammataro L, Mayo MJ, Invernizzi P, Bach N et al (2011) Epigenetic investigation of variably X chromosome inactivated genes in monozygotic female twins discordant for primary biliary cirrhosis. Epigenetics 6:95–102

    Article  PubMed  CAS  Google Scholar 

  45. Weksberg R, Shuman C, Caluseriu O, Smith AC, Fei YL, Nishikawa J et al (2002) Discordant KCNQ1OT1 imprinting in sets of monozygotic twins discordant for Beckwith-Wiedemann syndrome. Hum Mol Genet 11:1317–1325

    Article  PubMed  CAS  Google Scholar 

  46. Yamazawa K, Kagami M, Fukami M, Matsubara K, Ogata T (2008) Monozygotic female twins discordant for Silver-Russell syndrome and hypomethylation of the H19-DMR. J Hum Genet 53:950–955

    Article  PubMed  Google Scholar 

  47. Oates NA, van Vliet J, Duffy DL, Kroes HY, Martin NG, Boomsma DI et al (2006) Increased DNA methylation at the AXIN1 gene in a monozygotic twin from a pair discordant for a caudal duplication anomaly. Am J Hum Genet 79:155–162

    Article  PubMed  CAS  Google Scholar 

  48. Mastroeni D, McKee A, Grover A, Rogers J, Coleman PD (2009) Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer’s disease. PLoS One 4:e6617

    Article  PubMed  Google Scholar 

  49. Souren NY, Tierling S, Fryns JP, Derom C, Walter J, MP Zeegers (2011) DNA methylation variability at growth-related imprints does not contribute to overweight in monozygotic twins discordant for BMI. Obesity (Silver Spring) 19:1519–1522

    Article  CAS  Google Scholar 

  50. Wu TD, Nacu S (2010) Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26:873–881

    Article  PubMed  CAS  Google Scholar 

  51. Kuratomi G, Iwamoto K, Bundo M, Kusumi I, Kato N, Iwata N et al (2008) Aberrant DNA methylation associated with bipolar disorder identified from discordant monozygotic twins. Mol Psychiatry 13:429–441

    Article  PubMed  CAS  Google Scholar 

  52. Cobos I, Calcagnotto ME, Vilaythong AJ, Thwin MT, Noebels JL, Baraban SC et al (2005) Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy. Nat Neurosci 8:1059–1068

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Saffery .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Saffery, R., Morley, R., Foley, D.L. (2012). The Utility of Twins for Epigenetic Analysis. In: Michels, K. (eds) Epigenetic Epidemiology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2495-2_10

Download citation

Publish with us

Policies and ethics