Skip to main content

Lithographic Limit and Problems of Two-Photon Holograms in Quantum Optics: Application in Secured Communications

Quantum Communication and Holography

  • Conference paper
  • First Online:
Technological Innovations in Sensing and Detection of Chemical, Biological, Radiological, Nuclear Threats and Ecological Terrorism

Abstract

The application of coherence proprieties of bimodal field in quantum lithography and quantum holography is proposed. The coherence effect between the photons from Stokes and anti-Stokes waves generated in Raman lasing emission is established. The application of Stokes and anti-Stokes bimodal coherent field in lithography and holography are given in according with the definition of amplitude and phase of such entangled states of light. The optical scheme of holographic representation of object in bimodal representation is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Teich C et al (2001) Role of entanglement in two-photon imaging. Phys Rev Lett 87:123602

    Article  ADS  Google Scholar 

  2. Glauber RJ (1963) Coherent and incoherent states of the radiation field. Phys Rev 131:2766

    Article  MathSciNet  ADS  Google Scholar 

  3. Sudarshan ECG (1963) Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys Rev Lett 10:277

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Belinskiĭ V, Klyshko DN (1993) The interference of light and the Bell’s theorem. Usp Fiz Nauk 163(8):1

    Article  Google Scholar 

  5. Pfister O, Brown WJ, Stenner MD, Gauthier DJ (2001) Polarization instabilities in a two-photon laser. Phys Rev Lett 86:4512

    Article  ADS  Google Scholar 

  6. Boto AN et al (2000) Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys Rev Lett 85:2733

    Article  ADS  Google Scholar 

  7. Marrus R, Schmieder RW (1972) Forbidden decays of hydrogenlike and helium-like argon. Phys Rev A 5:1160

    Article  ADS  Google Scholar 

  8. Van Dyck RS, Johnson CE, Shugart HA (1970) Radiative lifetime of the metastable 21S0 state of helium. Phys Rev Lett 25:1403

    Article  ADS  Google Scholar 

  9. Enaki NA (1988) Superradiance in two-photon spontaneous emission. Sov Phys JETP 67:2033

    Google Scholar 

  10. Enaki NA, Macovei MA (1999) Two-photon cooperative decay in a cavity in the presence of a thermalized electromagnetic field. JETP 88:633 [(1999) Zh Eksp Teor Fiz 115:1153]

    Google Scholar 

  11. Sorokin PP, Braslau N (1964) Some theoretical aspects of a proposed double quantum stimulated emission device. IBM J Res Dev 8:177; Prokhorov AM (1965) Science 10:828

    Google Scholar 

  12. Nikolaus B, Zhang D, Toschek P (1981) Two-photon laser. Phys Rev Lett 47:171

    Article  ADS  Google Scholar 

  13. Brune M et al (1987) Realization of a two-photon maser oscillator. Phys Rev Lett 59:1899

    Article  ADS  Google Scholar 

  14. Saleh BEA, Teich MC (1991) Fundamentals of photonics. Wiley, New York, p 947. ISBN 0-471-83965-5

    Book  Google Scholar 

  15. Polzik S et al (2008) Quantum memory for images: a quantum hologram. Phys Rev A 77:020302(R)

    Google Scholar 

  16. Bjork G et al (2002) Two-photon imaging and quantum holography. arXiv:quant-ph (Quantum-Physics)/0211120v1 19 Nov 2002

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolae A. Enaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this paper

Cite this paper

Enaki, N.A. (2012). Lithographic Limit and Problems of Two-Photon Holograms in Quantum Optics: Application in Secured Communications. In: Vaseashta, A., Braman, E., Susmann, P. (eds) Technological Innovations in Sensing and Detection of Chemical, Biological, Radiological, Nuclear Threats and Ecological Terrorism. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2488-4_34

Download citation

Publish with us

Policies and ethics