Skip to main content

Nanomaterials Based Sensor Development Towards Electrochemical Sensing of Biointeractions

Electrochemical Sensors Based on Nanomaterials for Biointeractions

  • Conference paper
  • First Online:
Technological Innovations in Sensing and Detection of Chemical, Biological, Radiological, Nuclear Threats and Ecological Terrorism
  • 1502 Accesses

Abstract

Electrochemical sensor platforms can offer great promise for exploring a difference in biointeraction process occurred in solution and also at surface. Various nanomaterials; such as nanoparticles, nanowires, carbon nanotubes etc. have recently been under attention to be aimed for development of novel electrochemical sensors for screening of the interactions between the compounds and biomolecules; drugs, toxins, proteins, and nucleic acids; DNA, or PNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang J (2005) Nanomaterial-based electrochemical biosensors. Analyst 130:421–426

    Article  ADS  Google Scholar 

  2. Palecek E, Fojta M (2001) Detecting DNA hybridization and damage. Anal Chem 73:74 A–83 A

    Article  Google Scholar 

  3. Dean PM, Zanders ED, Bailey DS (2001) Industrial-scale, genomics-based drug design and discovery. Trends Biotechnol 19:288–292

    Article  Google Scholar 

  4. Erdem A (2007) Nanomaterial-based electrochemical DNA sensing strategies. Talanta 74:318–325

    Article  Google Scholar 

  5. Salem AK, Chao J, Leong KW, Searson PC (2004) Receptor-mediated self-assembly of multi-component magnetic nanowires. Adv Mater 16:268–271

    Article  Google Scholar 

  6. Erdem A, Papakonstantinou P, Murphy H (2006) Direct DNA hybridization at disposable graphite electrodes modified with carbon nanotubes. Anal Chem 78:6656–6659

    Article  Google Scholar 

  7. Karadeniz H, Erdem A, Caliskan A, Pereira CM, Pereira EM, Ribeiro JA (2007) Electrochemical sensing of silver tags labelled DNA immobilized onto disposable graphite electrodes. Electrochem Commun 9:2167–2173

    Article  Google Scholar 

  8. Hahm J, Lieber CM (2004) Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett 4:51–54

    Article  ADS  Google Scholar 

  9. Patolsky F, Lieber CM (2004) Nanowire nanosensors. Mater Today 8:20–28

    Article  Google Scholar 

  10. McFarland AD, Van Duyne RP (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3:1057–1062

    Article  ADS  Google Scholar 

  11. Erdem A, Karadeniz H, Caliskan A (2009) Single-walled carbon nanotubes modified graphite electrodes for electrochemical monitoring of nucleic acids and biomolecular interactions. Electroanal 21:464–471

    Article  Google Scholar 

  12. Kuhr WG (2000) Electrochemical DNA analysis comes of age. Nat Biotechnol 18:1042–1043

    Article  Google Scholar 

  13. Koehne JE, Chen H, Cassell AM, Ye Q, Han J, Meyyapan M, Li J (2004) Miniaturized multiplex label-free electronic chip for rapid nucleic acid analysis based on carbon nanotube nanoelectrode arrays. Clin Chem 50:1886–1893

    Article  Google Scholar 

  14. Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanal 17:7–14

    Article  Google Scholar 

  15. Mathur S, Erdem A, Cavelius C, Barth S, Altmayer J (2009) Amplified electrochemical DNA-sensing of nanostructured metal oxide films deposited on disposable graphite electrodes functionalized by chemical vapor deposition. Sensor Actuat B:Chem 136:432–437

    Article  Google Scholar 

  16. Zhang S, Wright G, Yang Y (2000) Materials and techniques for electrochemical biosensor design and construction. Biosens Bioelectron 15:273–282

    Article  Google Scholar 

  17. Caliskan A, Erdem A, Karadeniz H (2009) Direct DNA hybridization on the single-walled carbon nanotubes modified sensors detected by voltammetry and electrochemical impedance spectroscopy. Electroanal 21:2116–2124

    Article  Google Scholar 

  18. Besteman K, Lee JO, Wiertz FG, Heering HA, Dekker C (2003) Enzymecoated carbon nanotubes as single-molecule biosensors. Nano Lett 3:727–730

    Article  ADS  Google Scholar 

  19. Karadeniz H, Erdem A, Caliskan A (2008) Electrochemical monitoring of DNA hybridization by multiwalled carbon nanotube based screen printed electrodes. Electroanal 20:1932–1938

    Article  Google Scholar 

  20. Muti M, Kuralay F, Erdem A, Abaci S, Yumak T, Sinağ A (2010) Tin oxide nanoparticles-polymer modified single-use sensors for electrochemical monitoring of label-free DNA hybridization. Talanta 82:1680–1686

    Article  Google Scholar 

  21. Yapasan E, Caliskan A, Karadeniz H, Erdem A (2010) Electrochemical investigation of biomolecular interactions between platinum derivatives and DNA by carbon nanotubes modified sensors. Mat Sci Eng B:Solid 169:169–173

    Article  Google Scholar 

  22. Erdem A, Papakonstantinou P, Murphy H, Mcmullan M, Karadeniz H (2010) Streptavidin modified carbon nanotube based graphite electrode for label-free sequence specific DNA detection. Electroanal 22:611–617

    Article  Google Scholar 

  23. Pividori MI, Merkoci A, Alegret S (2000) Electrochemical genosensor design: immobilisation of oligonucleotides onto transducer surfaces and detection methods. Biosens Bioelectron 15:291–303

    Article  Google Scholar 

  24. Erdem A (2007) Genosensor technology for electrochemical sensing of nucleic acids by using different transducers. In: Alegret S, Merkoci A (eds) Electrochemical sensor analysis (ECSA)-comprehensive analytical chemistry book, vol 49. Elsevier, Amsterdam, pp 403–411

    Google Scholar 

  25. Song M, Zhang R, Wang X (2006) Nano-titanium dioxide enhanced biosensing of the interaction of dacarbazine with DNA and DNA bases. Mater Lett 60:2143–2147

    Article  Google Scholar 

  26. Ovádeková R, Jantová S, Letasiová S, Stepánek I, Labuda J (2006) Nanostructured electrochemical DNA biosensors for detection of the effect of berberine on DNA from cancer cells. Anal Bioanal Chem 386:2055–2062

    Article  Google Scholar 

  27. Huang J, Zhang X, Liu S, Lin Q, He X, Xing X, Lian W, Tang D (2010) Development of molecularly imprinted electrochemical sensor with titanium oxide and gold nanomaterials enhanced technique for determination of 4-nonylphenol. Sensor Actuat B:Chem 152:292–298

    Article  Google Scholar 

  28. Gronewold TMA, Glass S, Quandt E, Famulok M (2005) Monitoring complex formation in the blood-coagulation cascade using aptamer-coated SAW sensors. Biosens Bioelectron 20:2044–2052

    Article  Google Scholar 

  29. Jiang Y, Fang X, Bai C (2004) Signaling aptamer/protein binding by a molecular light switch complex. Anal Chem 76:5230–5235

    Article  Google Scholar 

  30. Bini A, Tombelli S, Centi S, Macsini M (2007) Analytical performances of aptamer-based sensing for thrombin detection. Anal Chem 79:3016–3019

    Article  Google Scholar 

  31. Wang J, Li G, Jan MR (2004) Ultrasensitive electrical biosensing of proteins and dna: carbon-nanotube derived amplification of the recognition and transduction events. J Am Chem Soc 126:3010–3011

    Article  Google Scholar 

  32. Jacob AH, Wang J, Kawde AN, Xiang Y (2006) Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. J Am Chem Soc 128:2228–2229

    Article  Google Scholar 

  33. Erdem A, Karadeniz H, Mayer G, Famulok M, Caliskan A (2009) Electrochemical sensing of aptamer-protein interactions using a magnetic particle assay and single-use sensor technology. Electroanal 21:1278–1284

    Article  Google Scholar 

  34. Tombelli S, Minunni M, Macsini M (2007) Aptamers-based assays for diagnostics, environmental and food analysis. Biomol Eng 24:191–200

    Article  Google Scholar 

  35. Kawde AN, Rodriguez MC, Lee TMH, Wang J (2005) Label-free bioelectronic detection of aptamer–protein interactions. Electrochem Commun 7:537–540

    Article  Google Scholar 

  36. Bang GS, Cho S, Kim BG (2005) A novel electrochemical detection method for aptamer biosensors. Biosens Bioelectron 21:863–870

    Article  Google Scholar 

  37. Song S, Wang L, Li J, Fan C, Zhao J (2008) Aptamer-based biosensors. Trend Anal Chem 27:108–117

    Article  Google Scholar 

  38. Centi S, Tombelli S, Minunni M, Macsini M (2007) Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads. Anal Chem 79:1466–1473

    Article  Google Scholar 

  39. Wei F, Ho C-M (2009) Aptamer-based electrochemical biosensor for Botulinum neurotoxin. Anal Bioanal Chem 393:1943–1948

    Article  Google Scholar 

  40. Deng L, Guo S, Zhou M, Ling L, Chang L, Shaojun D (2010) A silk derived carbon fiber mat modified with Au@Pt urchilike nanoparticles: a new platform as electrochemical microbial biosensor. Biosens Bioelectron 25:2189–2193

    Article  Google Scholar 

  41. Prabhakar N, Arora K, Singh H, Malhotra BD (2008) Polyaniline based nucleic acid sensor. J Phys Chem B 112:4808–4816

    Article  Google Scholar 

Download references

Acknowledgements

A.E would like to express her gratitude to the Turkish Academy of Sciences (TUBA) as the associate member of TUBA for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arzum Erdem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this paper

Cite this paper

Erdem, A. (2012). Nanomaterials Based Sensor Development Towards Electrochemical Sensing of Biointeractions. In: Vaseashta, A., Braman, E., Susmann, P. (eds) Technological Innovations in Sensing and Detection of Chemical, Biological, Radiological, Nuclear Threats and Ecological Terrorism. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2488-4_15

Download citation

Publish with us

Policies and ethics