Skip to main content

Nanomaterials in Environmental Contamination, Their Nanotoxicological Peculiarities

Nanomaterials in Environmental Contamination

  • Conference paper
  • First Online:

Abstract

Eco-nanothreat arises from a lack of knowledge about new states of matter (spheroidal molecules of carbon, nanostructures, nanoparticles and nanophases). Newly discovered nanomaterials are likely to have different behavior and properties than their predecessors. New approaches for creating nanotechnologies are developed by using nanomaterials. Nanotechnology is considered as a panacea for resolving global problems that may affect the duration and quality of life. However, progress in technology historically leads to positive and negative consequences, thus the same can be expected from nanotechnology. Several un-researched threats may arise from uncontrolled development of nanotechnology. Some scientists foresee nanotechnological and nanodemocratic threats connected to possible undesirable self-replication of different nanosystems, and uncontrolled application of cheap ubiquitous personal nanosensors for permanent surveillance of individuals. In addition, little research is aimed to study how nanomaterials may attribute to environmental contamination. Finally, the influence of nanoparticles and nanostructures on the human organism may also be threatening in certain circumstances.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kharlamov AI, Kirillova NV (2009) Fullerenes and hydrides of fullerenes as products transformation (polycondensation) of molecules of aromatic hydrocarbons. Rep Acad Sci Ukraine 5:110–118, Russian

    Google Scholar 

  2. Kharlamov AI, Kirillova NV, Skripnichenko AV, Gubareni NI, Fomenko VV (2010) Nanochemical peculiarities of nanostructures, nanophases and nanoparticles. Rep Acad Sci Ukraine 4:100–108, Russian

    Google Scholar 

  3. Buchachenko AL (2003) Nanochemistry is a direct route to high technologies of new century. Uspechi Chem 72(5):419–437, Russian

    Google Scholar 

  4. Pul Ch, Ouens F (2005) Nanotechnologies, Series: The world of materials and technologies. Texnosfera, Moscow, p 336 (Russian)

    Google Scholar 

  5. Kharlamov AI, Ushkalov LN, Кirillova NV, Fomenko VV, Gubareny NI, Skripnichenko AV (2006) Synthesis of onion nanostructures of carbon at pyrolysys of aromatic hydrocarbons. Rep Acad Sci Ukraine 3:97–103, Russian

    Google Scholar 

  6. Kharlamov AI, Loythenko SV, Kaverina SV, Fomenko VV (2004) Toroidal nanostructures of carbon. Single-walled 4-, 5- and 6-hedrons and nanorings. Rep Acad Sci Ukraine 1:95–100, Russian

    Google Scholar 

  7. Kharlamov AI, Kirillova NV, Karachevtseva LA, Kharlamova GO, Kharlamova GO (2003) Low-temperature reactions between vaporizing silicon and carbon. Theor Exp Chem 39(6):374–379

    Article  Google Scholar 

  8. Kharlamov AI, Kirillova NV (2002) Gas-phase reactions of formation of silicon carbide nanofilaments from silicon and carbon powders. Theor Exp Chem 38(1):59–63

    Article  Google Scholar 

  9. Kharlamov AI, Kirillova NV, Loytchenko SV et al (2002) Synthesis of elongated nanostructures of silicon carbide from powdery silicon and carbon. Rep Acad Sci Ukraine 10:98–105

    Google Scholar 

  10. Kharlamov AI, Kirillova NV, Kaverina SV (2003) Hollow and thread-like nanostructures of boron carbide. Theor Exp Chem 39(3):141–146

    Article  Google Scholar 

  11. Endo M (2008) Carbon nanotubes: growth, structural control and safety for applications, CarboCat-111. International symposium on carbon for catalysis. Conference Proceedings, Berlin, 9–12 Nov 2008, p 5

    Google Scholar 

  12. Kharlamova G, Kirillova G, Kharlamov N, Skripnichenko A (2008) Novel transparent molecular crystals of carbon. In: Vaseashta A, Mihailescu I (eds) Functionalized nanoscale materials, devices, and systems. Springer, Dordrecht, pp 373–379

    Chapter  Google Scholar 

  13. Kharlamov A, Kirillova N, Fomenko V (2007). In: Mehmetli E, Koumanova B (ed) The fate of persistent organic pollutants in the environment. Springer Science+Business Media B.V., Dordrecht, pp 425–441

    Book  Google Scholar 

  14. Kharlamov AI, Kirillova NV, Zytheva ZA (2007) New state of carbon: transparent thread-like anisotropic crystals. Rep Acad Sci Ukraine 5:101–106

    Google Scholar 

  15. Wang B (2006) Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice. Toxicol Lett 161:115–123

    Article  Google Scholar 

  16. Glushkova AV, Rodilov AS, Rembovskii VR (2007) In: Rachmanin YA (ed) Methodological problems of study and appraisal bio- and nanotechnologies (nanowave, particle, structure, processes, bioobjects) in human ecology and hygiene of environment. Materials of plenum of scientific counsel on man, pp 20–27 (Moscow)

    Google Scholar 

  17. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small J 4(1):26–49

    Article  Google Scholar 

  18. Allsopp M, Walters A, Santino D (2007) Nanotechnologies and nanomaterials in electrical and electronic goods: a review of uses and health concerns. Greenpeace Res Lab, December, 22 p

    Google Scholar 

  19. Chen L (2008) Manufactured aluminum oxide nanoparticles decrease expression of tight junction proteins in brain vasculature. Neuroimmune Pharmacolo 3:286–295

    Article  Google Scholar 

  20. Кovalenko LV, Folmanis GE (2006) Biological active nanopowders of iron. Science, Moscow, 124

    Google Scholar 

  21. Alt V, Bechert Th, Steinrücke P, Wagener M, Seidel P, Dingeldein E, Domann E, Schnettler R (2004) An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25(18):4383–4391

    Article  Google Scholar 

  22. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: An emerging discipline from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  Google Scholar 

  23. Hoet P, Bruske-Holfeld I, Salata O (2004) Nanoparticles – known and unknown health risks. J Nanobiotechnol 2:12

    Article  Google Scholar 

  24. Ostiguy C, Lapointe G, Ménard L, Cloutier Y, Trottier M, Boutin M, Antoun M, Normand C (2006) Health effects of nanoparticles. IRSST Report R-469, August 2006, Montréal. 57 pages

    Google Scholar 

  25. Kang SJ (2008) Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. Environ Mol Mutagens 49(5):399–405

    Article  Google Scholar 

  26. Long TC, Tajuba J, Sama P, Saleh N, Swartz C, Parker J, Hester S, Lowry GV, Veronesi B (2007) Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environ Health Perspect 115(11):1631–1637

    Article  Google Scholar 

  27. Zhu MT, Feng WY, Wang B, Wang TCh, Gu YQ, Wang M, Wang Y, Ouyang H, Zhao YL, Chai ZF (2008) Comparative study of pulmonary responses to nano- and submicron-sized ferric oxide in rats. Toxicology 247:102–111

    Article  Google Scholar 

  28. Lu N (2008) Nano titanium dioxide photocatalytic protein tyrosine nitration: a potential hazard of TiO2 on skin. Biochem Biophys Res Commun 370(4):675–680

    Article  Google Scholar 

  29. Heinlaan M, Ivask A, Blinov I, Dubourguier HCh, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans. Chemosphere 71:1308–1316

    Article  Google Scholar 

  30. Jiang J, Oberdrster G, Elder A, Gelein R, Mercer P, Biswas P (2008) Does nanoparticle activity depend upon size and crystal phase?. Nanotoxicology 2(1):33–42

    Article  Google Scholar 

  31. Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A (2006) Carbon nanotubes: review of their properties in relation to pulmonary toxicology and workplace safety. Toxicolo Sci 92(1):5–22

    Article  Google Scholar 

  32. Zhua S (2006) Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow. Mar Environ Res 62:5–9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Kharlamova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this paper

Cite this paper

Kharlamova, G., Kirillova, N. (2012). Nanomaterials in Environmental Contamination, Their Nanotoxicological Peculiarities. In: Vaseashta, A., Braman, E., Susmann, P. (eds) Technological Innovations in Sensing and Detection of Chemical, Biological, Radiological, Nuclear Threats and Ecological Terrorism. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2488-4_11

Download citation

Publish with us

Policies and ethics