Skip to main content

A physical length-scale for LES of turbulent flow

  • Conference paper
Direct and Large-Eddy Simulation VIII

Part of the book series: ERCOFTAC Series ((ERCO,volume 15))

Abstract

The fundamental assumption underlying large-eddy simulations (LES) is that the large, energy-carrying, eddies are resolved, while only the smaller eddies are modeled. An implication of this assumption is that the filter-width Δ, the length scale that separates the resolved from the unresolved eddies, should be a fraction of the integral scale, which is characteristic of the large eddies. In practice, however, the filter width is taken to be proportional to the grid size, h. This approach is generally legitimate, since the grid is usually refined where the important turbulence scales are smaller; it presents, however, two problems. First, rapid variations of the mesh (especially in methods that use local mesh refinement) may cause commutation and aliasing errors, and unphysical results (Vanella et al., 2008). Second, it requires knowledge, on the part of the user, on the characteristics of turbulence; in complex flows it may not be possible to predict the turbulence behavior a priori.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chorin, A. J. 1968 Numerical solution of Navier-Stokes equations. Math. Comput. 22 (104), 745–762.

    Article  MathSciNet  MATH  Google Scholar 

  2. Dean, R. B. 1978 Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow. ASME J. Fluids Eng. 100, 215–223.

    Article  Google Scholar 

  3. Geurts, B. J. 2003 Elements of direct and large-eddy simulation. Philadelphia: Edwards.

    Google Scholar 

  4. Geurts, B. J. & Meyers, J. 2006 Successive inverse polynomial interpolation to optimize Smagorinsky’s model for large-eddy simulation of homogeneous turbulence. Phys. Fluids 18, 118102.

    Article  MathSciNet  Google Scholar 

  5. Hoyas, S. & Jiménez, J. 2006 Scaling of the velocity fluctuations in turbulent channels up to Re τ =2003. Phys. Fluids 18, 011702.

    Article  Google Scholar 

  6. Keating, A. & Piomelli, U. 2006 A dynamic stochastic forcing method as a wall-layer model for large-eddy simulation. J. Turbul. 7 (12), 1–24.

    MathSciNet  Google Scholar 

  7. Keating, A., Piomelli, U., Balaras, E. & Kaltenbach, H.-J. 2004a A priori and a posteriori tests of inflow conditions for large-eddy simulation. Phys. Fluids 16 (12), 4696–4712.

    Article  Google Scholar 

  8. Morinishi, Y., Lund, T. S., Vasilyev, O. V. & Moin, P. 1998 Fully conservative higher order finite difference schemes for incompressible flows. J. Comput. Phys. 143, 90–124.

    Article  MathSciNet  MATH  Google Scholar 

  9. Vanella, M., Piomelli, U. & Balaras, E. 2008 Effect of grid discontinuities in large-eddy simulation statistics and flow fields. J. Turbul. 9 (32), 1–23.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugo Piomelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Piomelli, U., Geurts, B.J. (2011). A physical length-scale for LES of turbulent flow. In: Kuerten, H., Geurts, B., Armenio, V., Fröhlich, J. (eds) Direct and Large-Eddy Simulation VIII. ERCOFTAC Series, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2482-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2482-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2481-5

  • Online ISBN: 978-94-007-2482-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics