On the Dynamics of Pedestrians-Induced Lateral Vibrations of Footbridges

  • Stefano Lenci
  • Laura Marcheggiani
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 181)


This chapter is concerned with the problem of the large horizontal oscillations induced on slender footbridges by the motion of pedestrians, a phenomenon which involves the synchronization between the motion of walkers and that of the bridge deck. We initially review the extensive technical and scientific literature, and then we focus on two models to detect numerically and analytically the phenomenon. A continuous-time bridge-pedestrians model initially developed by Strogatz et al. is improved to better understand some aspects of the underlying mechanical phenomena. We perform extensive parametric investigations by means of many numerical simulations. This permits to highlight the parameters which mainly affect the trigger and the development of the phenomenon of synchronous lateral excitations, thus allowing a good understanding of the physical event and an evaluation of the engineering reliability of the model. Then, in order to obtain analytical instead of numerical predictions, a nonlinear discrete-time model based on an appropriate 1D map is considered. It is able to provide a reliable value of the number of pedestrians which trigger the synchronization, thus predicting the onset of instability which is also the onset of crowd synchronization. From a dynamical system point of view, the main result is that the model highlights how the phenomenon can be seen as a perturbation of a classical pitch-fork bifurcation, which is then shown to be the underlying dynamical event.


Synchronization-induced lateral vibrations continuous- and discrete-time models pedestrians-bridge interactions Millennium Bridge 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abrams, D.M.: Two coupled oscillator models: the Millennium Bridge and the chimera state. PhD Dissertation in Theoretical and Applied Mechanics, Cornell University, Ithaca, NY (2006), (accessed September 28, 2008)
  2. 2.
    Arup videos (2000), (accessed September 28, 2008)
  3. 3.
    Balthazar, J.M., Mook, D.T., Webwe, H.I., Brasil, R.M.L.R.F., Fenili, A., Belato, D., Felix, J.L.P.: An overview on non-ideal vibrations. Meccanica 38, 613–621 (2003)zbMATHCrossRefGoogle Scholar
  4. 4.
    Bauby, C.E., Kuo, A.D.: Active control of lateral balance in human walking. J. Biomech. 33, 1433–1440 (2000)CrossRefGoogle Scholar
  5. 5.
    Belli, A., Bui, P., Berger, A., Geyssant, A., Lacour, J.R.: A treadmill ergometer for three-dimensional ground reaction forces measurement during walking. J. Biomech. 34(1), 105–112 (2001)CrossRefGoogle Scholar
  6. 6.
    Blanchard, J., Davies, B.L., Smith, J.W.: Design criteria and analysis for dynamic loading of footbridges. In: Symposium Dyn Behav Bridges, Crowthorne, Berks, TRRL SR275:90-107 (1977)Google Scholar
  7. 7.
    Blekherman, A.N.: Autoparametric Resonance in a Pedestrian Steel Arch Bridge: Solferino Bridge. Paris. J. Bridge Eng. ASCE 12(6), 669–676 (2007)CrossRefGoogle Scholar
  8. 8.
    Bodgi, J., Erlicher, S., Argoul, P.: Lateral vibration of footbridges under crowd-loading: Continuous crowd modelling approach. Key Eng. Mater. 347, 685–690 (2007)CrossRefGoogle Scholar
  9. 9.
    Borri, C., Höffer, R.: Aeroelastic wind forces on flexible bridge girders. Meccanica 35, 1–15 (2000)zbMATHCrossRefGoogle Scholar
  10. 10.
    Candaten, M., Rinaldi, S.: Peak-to-peak dynamics: a critical survey. Int J. Bif. Chaos 10(8), 1805–1819 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Danbon, F., Grillaud, G.: Dynamic behaviour of a steel footbridge. Characterization and modelling of the dynamic loading induced by a moving crowd on the Solferino Footbridge in Paris. In: Proc Footbridge 2005 (2005)Google Scholar
  12. 12.
    Dallard, P., Fitzpatrick, A.J., Flint, A., Le Bourva, S., Low, A., Ridsdill Smith, R.M., Willford, M.: The London Millennium Footbridge. Struct. Eng. 79(22), 17–33 (2001)Google Scholar
  13. 13.
    Dallard, P., Fitzpatrick, A.J., Flint, A., Low, A., Ridsdill Smith, R.M., Willford, M., Roche, M.: London Millennium Bridge: pedestrian-induced lateral vibration. J. Bridge Eng. 6(6), 412–417 (2001)CrossRefGoogle Scholar
  14. 14.
    Eckhardt, B., Ott, E., Strogatz, S.H., Abrams, D.M., McRobie, A.: Modeling walker synchronization on the Millennium Bridge. Phys. Rev. E 75, 021110 (2007)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Fib: Guidelines for the design of footbridges. Guide to good practice. Bulletin 32 (2005)Google Scholar
  16. 16.
    Fitzpatrick, A.J., Dallard, P., Le Bourva, S., Low, A., Ridsdill Smith, R.M., Willford, M.: Linking London: The Millennium Bridge. Royal Academy of Engineering, 1–28 (2001)Google Scholar
  17. 17.
    Fujino, Y., Pacheco, B.M., Nakamura, S.I., Warnitchai, P.: Synchronization of human walking observed during lateral vibration of a congested pedestrian bridge. Earthq. Eng. Struct. Dyn. 22, 741–758 (1993)CrossRefGoogle Scholar
  18. 18.
    Gallagher, D.P.: Multi-Dimensional Optimization. Numer. Anal. 92, 563 (2006)Google Scholar
  19. 19.
    Gregoriou, G.G., Gotts, S.J., Zhou, H., Desimone, R.: High-Frequency, Long-Range Coupling Between Prefrontal and Visual Cortex During Attention. Science 324, 1207–1210 (2009)CrossRefGoogle Scholar
  20. 20.
    Grundmann, H., Kreuzinger, H., Schneider, M.: Dynamic calculations of footbridges. Bauingenieur 68, 215–225 (1993)Google Scholar
  21. 21.
    Hughes, R.L.: A continuum theory for the flow of pedestrians. Transp. Res. Part B: Methodol. 36(6), 507–535 (2002)CrossRefGoogle Scholar
  22. 22.
    Hof, A.L., Gazendam, M.G.J., Sinke, W.E.: The condition for dynamic stability. J. Biomech. 38, 1–8 (2005)CrossRefGoogle Scholar
  23. 23.
    Hof, A.L., van Bockel, R.M., Schoppen, T., Postema, K.: Control of lateral balance in walking: experimental findings in normal subjects and above-knee amputees. Gait Posture 25, 250–258 (2007)CrossRefGoogle Scholar
  24. 24.
    Hoogendoorn, S.P., Bovy, P.H.L.: Pedestrian route-choice and activity scheduling theory and models. Transp. Res. Part B: Methodol. 38(2), 169–190 (2004)CrossRefGoogle Scholar
  25. 25.
    Kaneoke, Y.: Magnetoencephalography: In search of neural processes for visual motion information. Progr. Neurobiol. 80(5), 219–240 (2006)CrossRefGoogle Scholar
  26. 26.
    Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions. SIAM J. Optim. 9(1), 112–147 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Lenci, S., Marcheggiani, L.: A discrete-time model for the phenomenon of synchronous lateral excitation due to pedestrians motion on footbridges. In: Proc. Third International Conference Footbridge 2008, Porto, Portugal (2008)Google Scholar
  28. 28.
    Macdonald, J.H.G.: Lateral excitation of bridges by balancing pedestrians. Proc. R. Soc. A 465, 1055–1073 (2009)zbMATHMathSciNetGoogle Scholar
  29. 29.
    Matsumoto, Y., Nishioka, T., Shiojiri, H., Matsuzaki, K.: Dynamic design of footbridges. In: Proc. IABSE, Zurich, Switzerland (1978)Google Scholar
  30. 30.
    Marcheggiani, L., Lenci, S.: On a model for the pedestrians-induced lateral vibrations of footbridges. Meccanica 45, 531–551 (2010); doi:10.1007/s11012-009-9269-0CrossRefGoogle Scholar
  31. 31.
    McRobie, A., Morgenthal, G., Lasenby, J., Ringer, M.: Section model tests on human-structure lock-in. Bridge Eng. 156(2), 71–79 (2003)CrossRefGoogle Scholar
  32. 32.
    Mondada, L.: Emergent focused interactions in public places: A systematic analysis of the multimodal achievement of a common interactional space. J.Pragmat. 41(10), 1977–1997 (2008)CrossRefGoogle Scholar
  33. 33.
    Nakamura, S.: Model for lateral excitation of footbridges by synchronous walking. J. Struct. Eng. ASCE 130, 32–37 (2004)CrossRefGoogle Scholar
  34. 34.
    Nakamura, S.I., Kawasaki, T.: Lateral vibration of footbridges by synchronous walking. J. Constr. Steel Res. 62, 1148–1160 (2006)CrossRefGoogle Scholar
  35. 35.
    Newland, D.E.: Vibration: problem and solution. In: Sudjic, D. (ed.) Blade of light: the story of London’s Millennium Bridge. Penguin Books, London (2001)Google Scholar
  36. 36.
    Newland, D.E.: Pedestrian excitation of bridges - recent results. In: Proc. Tenth Int. Congr. Sound Vib., Stockholm, Sweden (2003)Google Scholar
  37. 37.
    Piccardo, G., Tubino, F.: Parametric resonance of flexible footbridges under crowd-induced lateral excitation. J. Sound Vib. 311, 353–371 (2008)CrossRefGoogle Scholar
  38. 38.
    Roberts, T.M.: Lateral pedestrian excitation of footbridges. J. Bridge Eng. ASCE 10(1), 107–112 (2005)CrossRefGoogle Scholar
  39. 39.
    Roberts, T.M.: Synchronised pedestrian lateral excitation of footbridges. In: Proc. Eurodyn 2005, pp. 1089–1094 (2005)Google Scholar
  40. 40.
    Roberts, T.M.: Probabilistic pedestrian lateral excitation of bridges. Proc. ICE, Bridge. Eng. 158(2), 53–61 (2005)CrossRefGoogle Scholar
  41. 41.
    Ricciardelli, F., Pizzimenti, A.D.: Lateral Walking-Induced Forces on Footbridges. J. Bridge Eng. ASCE 12(6), 677–688 (2007)CrossRefGoogle Scholar
  42. 42.
    Ricciardelli, F., Pizzimenti, A.D.: Experimental evaluation of the dynamic lateral loading of footbridges by walking pedestrians. In: Proc. Eurodyn. 2005 (2005)Google Scholar
  43. 43.
    Salvatori, L., Spinelli, P.: A discrete 3D model for bridge aerodynamics and aeroelasticity: nonlinearities and linearizations. Meccanica 42, 31–46 (2007)zbMATHCrossRefGoogle Scholar
  44. 44.
    Strogatz, S.H.: Nonlinear Dynamics and Chaos, with Applications to Physics, Biology, Chemistry, and Engineering. Perseus Books, Massachusetts (2000)Google Scholar
  45. 45.
    Strogatz, S.H.: Sync: the emerging science of spontaneous order. Hyperion, New York (2003)Google Scholar
  46. 46.
    Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143, 1–20 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Strogatz, S.H., Abrams, D.M., McRobie, F.A., Eckhardt, B., Ott, E.: Crowd synchrony on the Millennium Bridge. Nature 438, 43–44 (2005)CrossRefGoogle Scholar
  48. 48.
    Sétra, Footbridges: assessment of vibrational behaviour of footbridges under pedestrian loading. Afgc, Paris (2006), (accessed September 28, 2008)
  49. 49.
    Trovato, A., Erlicher, S., Argoul, P.: A modified Van der Pol oscillator for modelling the lateral force of a pedestrian during walking. In: Proc. Conference Vibrations, Chocs & Bruit, Lyon, France (2008)Google Scholar
  50. 50.
    Vaughan, C.L.: Theories of bipedal walking: an odyssey. J. Biomech. 36, 513–523 (2003)CrossRefGoogle Scholar
  51. 51.
    Venuti, F., Bruno, L.: Crowd-structure interaction in lively footbridges under synchronous lateral excitation: A literature review. Physics of Life Reviews 6, 176–206 (2009)CrossRefGoogle Scholar
  52. 52.
    Venuti, F., Bruno, L., Bellomo, N.: Crowd dynamics on a moving platform: Mathematical modelling and application to lively footbridges. Math. Comput. Model. 45, 252–269 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Wheeler, J.E.: Pedestrian induced vibration in footbridges. Technical Rep N°15, Main Roads Dep., Western Australia (1980)Google Scholar
  54. 54.
    Zivanovic, S., Pavic, A., Reynolds, P.: Vibration serviceability of footbridges under hu-man-induced excitation: a literature review. J. Sound Vib. 279, 1–74 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stefano Lenci
    • 1
  • Laura Marcheggiani
    • 1
  1. 1.Department of Architecture, Buildings and StructuresPolytechnic University of MarcheAnconaItaly

Personalised recommendations