Skip to main content

Lactoferrin as a Signaling Mediator

  • Chapter
  • First Online:
Lactoferrin and its Role in Wound Healing

Abstract

Lactoferrin is a metal-binding protein, secreted from glandular epithelial cells and neutrophils. As well as other growth factors and cytokines, it plays a role for regulation of cell behavior by interacting with target cells and molecules. At the surface of the cells, the sulfated chain of proteoglycans is considered as primary lactoferrin binding site. The initial binding to proteoglycans can induce lactoferrin interaction to specific receptors, such as intelectin, LDL-receptor related protein (LRP), nucleolin and CD14. Lymphocyte expresses lactoferrin receptor which molecular weight is about 105 kDa. However, molecular nature of the lymphocye lactoferrin receptor is unknown. Some of lactoferrin receptors are involved in receptor-mediated uptake of lactoferrin. Lactoferrin acts as an anabolic factor for skeletal tissue and promotes the growth and differentiation of osteoblasts and chondrocytes. Lactoferrin antagonizes bone resorption by inhibiting osteoclastic differentiation. It inhibits the tumor cell growth by regulating the expression of and phosphorylation of cyclin-dependent kinase inhibitors (CKIs). The signal transduction pathways induced by lactoferrin is partially understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baker EN, Baker HM (2005) Molecular structure, binding properties and dynamics of lactoferrin. Cell Mol Life Sci 62(22):2531–2539

    PubMed  CAS  Google Scholar 

  2. Legrand D, Elass E, Carpentier M, Mazurier J (2006) Interactions of lactoferrin with cells involved in immune function. Biochem Cell Biol 84(3):282–290

    PubMed  CAS  Google Scholar 

  3. Suzuki YA, Lopez V, Lonnerdal B (2005) Mammalian lactoferrin receptors: structure and function. Cell Mol Life Sci 62(22):2560–2575

    PubMed  CAS  Google Scholar 

  4. Hu WL, Mazurier J, Montreuil J, Spik G (1990) Isolation and partial characterization of a lactotransferrin receptor from mouse intestinal brush border. Biochemistry 29(2):535–541

    PubMed  CAS  Google Scholar 

  5. Suzuki YA, Lonnerdal B (2004) Baculovirus expression of mouse lactoferrin receptor and tissue distribution in the mouse. Biometals 17(3):301–309

    PubMed  CAS  Google Scholar 

  6. Kawakami H, Lonnerdal B (1991) Isolation and function of a receptor for human lactoferrin in human fetal intestinal brush-border membranes. Am J Physiol 261(5 Pt 1):G841–G846

    PubMed  CAS  Google Scholar 

  7. Tsuji S, Uehori J, Matsumoto M, Suzuki Y et al (2001) Human intelectin is a novel soluble lectin that recognizes galactofuranose in carbohydrate chains of bacterial cell wall. J Biol Chem 276(26):23456–23463

    PubMed  CAS  Google Scholar 

  8. Suzuki YA, Shin K, Lonnerdal B (2001) Molecular cloning and functional expression of a human intestinal lactoferrin receptor. Biochemistry 40(51):15771–15779

    PubMed  CAS  Google Scholar 

  9. Willnow TE, Goldstein JL, Orth K, Brown MS et al (1992) Low density lipoprotein receptor-related protein and gp330 bind similar ligands, including plasminogen activator-inhibitor complexes and lactoferrin, an inhibitor of chylomicron remnant clearance. J Biol Chem 267(36):26172–26180

    PubMed  CAS  Google Scholar 

  10. Herz J, Strickland DK (2001) LRP: a multifunctional scavenger and signaling receptor. J Clin Invest 108(6):779–784

    PubMed  CAS  Google Scholar 

  11. May P, Woldt E, Matz RL, Boucher P (2007) The LDL receptor-related protein (LRP) family: an old family of proteins with new physiological functions. Ann Med 39(3):219–228

    PubMed  CAS  Google Scholar 

  12. Fisher CE, Howie SE (2006) The role of megalin (LRP-2/Gp330) during development. Dev Biol 296(2):279–297

    PubMed  CAS  Google Scholar 

  13. Lillis AP, Greenlee MC, Mikhailenko I, Pizzo SV et al (2008) Murine low-density lipoprotein receptor-related protein 1 (LRP) is required for phagocytosis of targets bearing LRP ligands but is not required for C1q-triggered enhancement of phagocytosis. J Immunol 181(1):364–373

    PubMed  CAS  Google Scholar 

  14. Neels JG, van Den Berg BM, Lookene A, Olivecrona G et al (1999) The second and fourth cluster of class A cysteine-rich repeats of the low density lipoprotein receptor-related protein share ligand-binding properties. J Biol Chem 274(44):31305–31311

    PubMed  CAS  Google Scholar 

  15. Fillebeen C, Descamps L, Dehouck MP, Fenart L et al (1999) Receptor-mediated transcytosis of lactoferrin through the blood-brain barrier. J Biol Chem 274(11):7011–7017

    PubMed  CAS  Google Scholar 

  16. Takayama Y, Takahashi H, Mizumachi K, Takezawa T (2003) Low density lipoprotein receptor-related protein (LRP) is required for lactoferrin-enhanced collagen gel contractile activity of human fibroblasts. J Biol Chem 278(24):22112–22118

    PubMed  CAS  Google Scholar 

  17. Grey A, Banovic T, Zhu Q, Watson M et al (2004) The low-density lipoprotein receptor-related protein 1 is a mitogenic receptor for lactoferrin in osteoblastic cells. Mol Endocrinol 18(9):2268–2278

    PubMed  CAS  Google Scholar 

  18. Tang L, Wu JJ, Ma Q, Cui T et al (2010) Human lactoferrin stimulates skin keratinocyte function and wound re-epithelialization. Br J Dermatol 163(1):38–47

    PubMed  CAS  Google Scholar 

  19. Prieels JP, Pizzo SV, Glasgow LR, Paulson JC et al (1978) Hepatic receptor that specifically binds oligosaccharides containing fucosyl alpha1 leads to 3 N-acetylglucosamine linkages. Proc Natl Acad Sci USA 75(5):2215–2219

    PubMed  CAS  Google Scholar 

  20. Bennett RM, Kokocinski T (1979) Lactoferrin turnover in man. Clin Sci (Lond) 57(5):453–460

    CAS  Google Scholar 

  21. Ziere GJ, Bijsterbosch MK, van Berkel TJ (1993) Removal of 14 N-terminal amino acids of lactoferrin enhances its affinity for parenchymal liver cells and potentiates the inhibition of beta- very low density lipoprotein binding. J Biol Chem 268(36):27069–27075

    PubMed  CAS  Google Scholar 

  22. Bennatt DJ, McAbee DD (1997) Identification and isolation of a 45-kDa calcium-dependent lactoferrin receptor from rat hepatocytes. Biochemistry 36(27):8359–8366

    PubMed  CAS  Google Scholar 

  23. McAbee DD, Bennatt DJ, Ling YY (1998) Identification and analysis of a CA(2+)-dependent lactoferrin receptor in rat liver. Lactoferrin binds to the asialoglycoprotein receptor in a galactose-independent manner. Adv Exp Med Biol 443:113–121

    PubMed  CAS  Google Scholar 

  24. Ginisty H, Amalric F, Bouvet P (1998) Nucleolin functions in the first step of ribosomal RNA processing. EMBO J 17(5):1476–1486

    PubMed  CAS  Google Scholar 

  25. Srivastava M, Pollard HB (1999) Molecular dissection of nucleolin’s role in growth and cell proliferation: new insights. FASEB J 13(14):1911–1922

    PubMed  CAS  Google Scholar 

  26. Kleinman HK, Weeks BS, Cannon FB, Sweeney TM et al (1991) Identification of a 110-kDa nonintegrin cell surface laminin-binding protein which recognizes an A chain neurite-promoting peptide. Arch Biochem Biophys 290(2):320–325

    PubMed  CAS  Google Scholar 

  27. Take M, Tsutsui J, Obama H, Ozawa M et al (1994) Identification of nucleolin as a binding protein for midkine (MK) and heparin-binding growth associated molecule (HB-GAM). J Biochem 116(5):1063–1068

    PubMed  CAS  Google Scholar 

  28. Said EA, Krust B, Nisole S, Svab J et al (2002) The anti-HIV cytokine midkine binds the cell surface-expressed nucleolin as a low affinity receptor. J Biol Chem 277(40):37492–37502

    PubMed  CAS  Google Scholar 

  29. Larrucea S, Gonzalez-Rubio C, Cambronero R, Ballou B et al (1998) Cellular adhesion mediated by factor J, a complement inhibitor. Evidence for nucleolin involvement. J Biol Chem 273(48):31718–31725

    PubMed  CAS  Google Scholar 

  30. Legrand D, Vigie K, Said EA, Elass E et al (2004) Surface nucleolin participates in both the binding and endocytosis of lactoferrin in target cells. Eur J Biochem 271(2):303–317

    PubMed  CAS  Google Scholar 

  31. Legrand D, van Berkel PH, Salmon V, van Veen HA et al (1997) The N-terminal Arg2, Arg3 and Arg4 of human lactoferrin interact with sulphated molecules but not with the receptor present on Jurkat human lymphoblastic T-cells. Biochem J 327(Pt 3):841–846

    PubMed  CAS  Google Scholar 

  32. Mazurier J, Legrand D, Hu WL, Montreuil J et al (1989) Expression of human lactotransferrin receptors in phytohemagglutinin-stimulated human peripheral blood lymphocytes. Isolation of the receptors by antiligand-affinity chromatography. Eur J Biochem 179(2):481–487

    PubMed  CAS  Google Scholar 

  33. Leveugle B, Mazurier J, Legrand D, Mazurier C et al (1993) Lactotransferrin binding to its platelet receptor inhibits platelet aggregation. Eur J Biochem 213(3):1205–1211

    PubMed  CAS  Google Scholar 

  34. Van Snick JL, Masson PL (1976) The binding of human lactoferrin to mouse peritoneal cells. J Exp Med 144(6):1568–1580

    PubMed  Google Scholar 

  35. Roseanu A, Chelu F, Trif M, Motas C et al (2000) Inhibition of binding of lactoferrin to the human promonocyte cell line THP-1 by heparin: the role of cell surface sulphated molecules. Biochim Biophys Acta 1475(1):35–38

    PubMed  CAS  Google Scholar 

  36. Eda S, Kikugawa K, Beppu M (1997) Characterization of lactoferrin-binding proteins of human macrophage membrane: multiple species of lactoferrin-binding proteins with polylactosamine-binding ability. Biol Pharm Bull 20(2):127–133

    PubMed  CAS  Google Scholar 

  37. Haversen L, Ohlsson BG, Hahn-Zoric M, Hanson LA et al (2002) Lactoferrin down-regulates the LPS-induced cytokine production in monocytic cells via NF-kappa B. Cell Immunol 220(2):83–95

    PubMed  CAS  Google Scholar 

  38. Mattsby-Baltzer I, Roseanu A, Motas C, Elverfors J et al (1996) Lactoferrin or a fragment thereof inhibits the endotoxin-induced interleukin-6 response in human monocytic cells. Pediatr Res 40(2):257–262

    PubMed  CAS  Google Scholar 

  39. Elass-Rochard E, Legrand D, Salmon V, Roseanu A et al (1998) Lactoferrin inhibits the endotoxin interaction with CD14 by competition with the lipopolysaccharide-binding protein. Infect Immun 66(2):486–491

    PubMed  CAS  Google Scholar 

  40. Ando K, Hasegawa K, Shindo K, Furusawa T et al (2010) Human lactoferrin activates NF-kappaB through the Toll-like receptor 4 pathway while it interferes with the lipopolysaccharide-stimulated TLR4 signaling. FEBS J 277(9):2051–2066

    PubMed  CAS  Google Scholar 

  41. Curran CS, Demick KP, Mansfield JM (2006) Lactoferrin activates macrophages via TLR4-dependent and -independent signaling pathways. Cell Immunol 242(1):23–30

    PubMed  CAS  Google Scholar 

  42. Pluddemann A, Neyen C, Gordon S (2007) Macrophage scavenger receptors and host-derived ligands. Methods 43(3):207–217

    PubMed  Google Scholar 

  43. Hirano K, Miki Y, Hirai Y, Sato R et al (2005) A multifunctional shuttling protein nucleolin is a macrophage receptor for apoptotic cells. J Biol Chem 280(47):39284–39293

    PubMed  CAS  Google Scholar 

  44. Zimecki M, Kocieba M, Kruzel M (2002) Immunoregulatory activities of lactoferrin in the delayed type hypersensitivity in mice are mediated by a receptor with affinity to mannose. Immunobiology 205(1):120–131

    PubMed  CAS  Google Scholar 

  45. Groot F, Geijtenbeek TB, Sanders RW, Baldwin CE et al (2005) Lactoferrin prevents dendritic cell-mediated human immunodeficiency virus type 1 transmission by blocking the DC-SIGN–gp120 interaction. J Virol 79(5):3009–3015

    PubMed  CAS  Google Scholar 

  46. Naarding MA, Ludwig IS, Groot F, Berkhout B et al (2005) Lewis X component in human milk binds DC-SIGN and inhibits HIV-1 transfer to CD4+ T lymphocytes. J Clin Invest 115(11):3256–3264

    PubMed  CAS  Google Scholar 

  47. Bennett RM, Davis J (1981) Lactoferrin binding to human peripheral blood cells: an interaction with a B-enriched population of lymphocytes and a subpopulation of adherent mononuclear cells. J Immunol 127(3):1211–1216

    PubMed  CAS  Google Scholar 

  48. Zimecki M, Mazurier J, Spik G, Kapp JA (1995) Human lactoferrin induces phenotypic and functional changes in murine splenic B cells. Immunology 86(1):122–127

    PubMed  CAS  Google Scholar 

  49. Mincheva-Nilsson L, Hammarstrom S, Hammarstrom ML (1997) Activated human gamma delta T lymphocytes express functional lactoferrin receptors. Scand J Immunol 46(6):609–618

    PubMed  CAS  Google Scholar 

  50. Bi BY, Liu JL, Legrand D, Roche AC et al (1996) Internalization of human lactoferrin by the Jurkat human lymphoblastic T-cell line. Eur J Cell Biol 69(3):288–296

    PubMed  CAS  Google Scholar 

  51. Dhennin-Duthille I, Masson M, Damiens E, Fillebeen C et al (2000) Lactoferrin upregulates the expression of CD4 antigen through the stimulation of the mitogen-activated protein kinase in the human lymphoblastic T Jurkat cell line. J Cell Biochem 79(4):583–593

    PubMed  CAS  Google Scholar 

  52. Frydecka I, Zimecki M, Bocko D, Kosmaczewska A et al (2002) Lactoferrin-induced up-regulation of zeta (zeta) chain expression in peripheral blood T lymphocytes from cervical cancer patients. Anticancer Res 22(3):1897–1901

    PubMed  CAS  Google Scholar 

  53. Damiens E, El Yazidi I, Mazurier J, Duthille I et al (1999) Lactoferrin inhibits G1 cyclin-dependent kinases during growth arrest of human breast carcinoma cells. J Cell Biochem 74(3):486–498

    PubMed  CAS  Google Scholar 

  54. Son HJ, Lee SH, Choi SY (2006) Human lactoferrin controls the level of retinoblastoma protein and its activity. Biochem Cell Biol 84(3):345–350

    PubMed  CAS  Google Scholar 

  55. Oh SM, Pyo CW, Kim Y, Choi SY (2004) Neutrophil lactoferrin upregulates the human p53 gene through induction of NF-kappaB activation cascade. Oncogene 23(50):8282–8291

    PubMed  CAS  Google Scholar 

  56. Zhou Y, Zeng Z, Zhang W, Xiong W et al (2008) Lactotransferrin: a candidate tumor suppressor-Deficient expression in human nasopharyngeal carcinoma and inhibition of NPC cell proliferation by modulating the mitogen-activated protein kinase pathway. Int J Cancer 123(9):2065–2072

    PubMed  CAS  Google Scholar 

  57. Xiao Y, Monitto CL, Minhas KM, Sidransky D (2004) Lactoferrin down-regulates G1 cyclin-dependent kinases during growth arrest of head and neck cancer cells. Clin Cancer Res 10(24):8683–8686

    PubMed  CAS  Google Scholar 

  58. Xu XX, Jiang HR, Li HB, Zhang TN et al (2010) Apoptosis of stomach cancer cell SGC-7901 and regulation of Akt signaling way induced by bovine lactoferrin. J Dairy Sci 93(6):2344–2350

    PubMed  CAS  Google Scholar 

  59. Lee SH, Park SW, Pyo CW, Yoo NK et al (2009) Requirement of the JNK-associated Bcl-2 pathway for human lactoferrin-induced apoptosis in the Jurkat leukemia T cell line. Biochimie 91(1):102–108

    PubMed  CAS  Google Scholar 

  60. Lee SH, Hwang HM, Pyo CW, Hahm DH et al (2010) E2F1-directed activation of Bcl-2 is correlated with lactoferrin-induced apoptosis in Jurkat leukemia T lymphocytes. Biometals 23(3):507–514

    PubMed  CAS  Google Scholar 

  61. Furlong SJ, Mader JS, Hoskin DW (2010) Bovine lactoferricin induces caspase-independent apoptosis in human B-lymphoma cells and extends the survival of immune-deficient mice bearing B-lymphoma xenografts. Exp Mol Pathol 88(3):371–375

    PubMed  CAS  Google Scholar 

  62. Lee SH, Pyo CW, Hahm DH, Kim J et al (2009) Iron-saturated lactoferrin stimulates cell cycle progression through PI3K/Akt pathway. Mol Cells 28(1):37–42

    PubMed  CAS  Google Scholar 

  63. Breton M, Mariller C, Benaissa M, Caillaux K et al (2004) Expression of delta-lactoferrin induces cell cycle arrest. Biometals 17(3):325–329

    PubMed  CAS  Google Scholar 

  64. Norrby K (2004) Human apo-lactoferrin enhances angiogenesis mediated by vascular endothelial growth factor A in vivo. J Vasc Res 41(4):293–304

    PubMed  CAS  Google Scholar 

  65. Kim CW, Son KN, Choi SY, Kim J (2006) Human lactoferrin upregulates expression of KDR/Flk-1 and stimulates VEGF-A-mediated endothelial cell proliferation and migration. FEBS Lett 580(18):4332–4336

    PubMed  CAS  Google Scholar 

  66. Norrby K, Mattsby-Baltzer I, Innocenti M, Tuneberg S (2001) Orally administered bovine lactoferrin systemically inhibits VEGF(165)-mediated angiogenesis in the rat. Int J Cancer 91(2):236–240

    PubMed  CAS  Google Scholar 

  67. Shimamura M, Yamamoto Y, Ashino H, Oikawa T et al (2004) Bovine lactoferrin inhibits tumor-induced angiogenesis. Int J Cancer 111(1):111–116

    PubMed  CAS  Google Scholar 

  68. Mader JS, Smyth D, Marshall J, Hoskin DW (2006) Bovine lactoferricin inhibits basic fibroblast growth factor- and vascular endothelial growth factor165-induced angiogenesis by competing for heparin-like binding sites on endothelial cells. Am J Pathol 169(5):1753–1766

    PubMed  CAS  Google Scholar 

  69. Takayama Y, Mizumachi K (2001) Effects of lactoferrin on collagen gel contractile activity and myosin light chain phosphorylation in human fibroblasts. FEBS Lett 508(1):111–116

    PubMed  CAS  Google Scholar 

  70. Tang L, Cui T, Wu JJ, Liu-Mares W et al (2010) A rice-derived recombinant human lactoferrin stimulates fibroblast proliferation, migration, and sustains cell survival. Wound Repair Regen 18(1):123–131

    PubMed  Google Scholar 

  71. Birkenmeier G, Heidrich K, Glaser C, Handschug K et al (1998) Different expression of the alpha2-macroglobulin receptor/low-density lipoprotein receptor-related protein in human keratinocytes and fibroblasts. Arch Dermatol Res 290(10):561–568

    PubMed  CAS  Google Scholar 

  72. Cornish J, Callon KE, Naot D, Palmano KP et al (2004) Lactoferrin is a potent regulator of bone cell activity and increases bone formation in vivo. Endocrinology 145(9):4366–4374

    PubMed  CAS  Google Scholar 

  73. Takayama Y, Mizumachi K (2008) Effect of bovine lactoferrin on extracellular matrix calcification by human osteoblast-like cells. Biosci Biotechnol Biochem 72(1):226–230

    PubMed  CAS  Google Scholar 

  74. Takayama Y, Mizumachi K (2009) Effect of lactoferrin-embedded collagen membrane on osteogenic differentiation of human osteoblast-like cells. J Biosci Bioeng 107(2):191–195

    PubMed  CAS  Google Scholar 

  75. Herz J, Goldstein JL, Strickland DK, Ho YK et al (1991) 39-kDa protein modulates binding of ligands to low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor. J Biol Chem 266(31):21232–21238

    PubMed  CAS  Google Scholar 

  76. Willnow TE, Sheng Z, Ishibashi S, Herz J (1994) Inhibition of hepatic chylomicron remnant uptake by gene transfer of a receptor antagonist. Science 264(5164):1471–1474

    PubMed  CAS  Google Scholar 

  77. Grey A, Zhu Q, Watson M, Callon K et al (2006) Lactoferrin potently inhibits osteoblast apoptosis, via an LRP1-independent pathway. Mol Cell Endocrinol 251(1–2):96–102

    PubMed  CAS  Google Scholar 

  78. Nakajima KI, Kanno Y, Nakamura M, Gao XD et al. (2011) Bovine milk lactoferrin induces synthesis of the angiogenic factors VEGF and FGF2 in osteoblasts via the p44/p42 MAP kinase pathway. Biometals 24(5):847–856

    Google Scholar 

  79. Lorget F, Clough J, Oliveira M, Daury MC et al (2002) Lactoferrin reduces in vitro osteoclast differentiation and resorbing activity. Biochem Biophys Res Commun 296(2):261–266

    PubMed  CAS  Google Scholar 

  80. Cornish J, Naot D (2010) Lactoferrin as an effector molecule in the skeleton. Biometals 23(3):425–430

    PubMed  CAS  Google Scholar 

  81. Li TF, O’Keefe RJ, Chen D (2005) TGF-beta signaling in chondrocytes. Front Biosci 10:681–688

    PubMed  CAS  Google Scholar 

  82. Furumatsu T, Tsuda M, Taniguchi N, Tajima Y et al (2005) Smad3 induces chondrogenesis through the activation of SOX9 via CREB-binding protein/p300 recruitment. J Biol Chem 280(9):8343–8350

    PubMed  CAS  Google Scholar 

  83. Akiyama H (2008) Control of chondrogenesis by the transcription factor Sox9. Mod Rheumatol 18(3):213–219

    PubMed  CAS  Google Scholar 

  84. Provot S, Schipani E (2005) Molecular mechanisms of endochondral bone development. Biochem Biophys Res Commun 328(3):658–665

    PubMed  CAS  Google Scholar 

  85. Ikeda T, Kawaguchi H, Kamekura S, Ogata N et al (2005) Distinct roles of Sox5, Sox6, and Sox9 in different stages of chondrogenic differentiation. J Bone Miner Metab 23(5):337–340

    PubMed  Google Scholar 

  86. Huang W, Chung UI, Kronenberg HM, de Crombrugghe B (2001) The chondrogenic transcription factor Sox9 is a target of signaling by the parathyroid hormone-related peptide in the growth plate of endochondral bones. Proc Natl Acad Sci USA 98(1):160–165

    PubMed  CAS  Google Scholar 

  87. Yamashiro T, Wang XP, Li Z, Oya S et al (2004) Possible roles of Runx1 and Sox9 in incipient intramembranous ossification. J Bone Miner Res 19(10):1671–1677

    PubMed  CAS  Google Scholar 

  88. Yang X, Chen L, Xu X, Li C et al (2001) TGF-beta/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage. J Cell Biol 153(1):35–46

    PubMed  CAS  Google Scholar 

  89. Li TF, Darowish M, Zuscik MJ, Chen D et al (2006) Smad3-deficient chondrocytes have enhanced BMP signaling and accelerated differentiation. J Bone Miner Res 21(1):4–16

    PubMed  Google Scholar 

  90. Takayama Y, Mizumachi K (2010) Inhibitory effect of lactoferrin on hypertrophic differentiation of ATDC5 mouse chondroprogenitor cells. Biometals 23(3):477–484

    PubMed  CAS  Google Scholar 

  91. Brandl N, Zemann A, Kaupe I, Marlovits S et al (2010) Signal transduction and metabolism in chondrocytes is modulated by lactoferrin. Osteoarthritis Cartilage 18(1):117–125

    PubMed  CAS  Google Scholar 

  92. Yagi M, Suzuki N, Takayama T, Arisue M et al (2009) Effects of lactoferrin on the differentiation of pluripotent mesenchymal cells. Cell Biol Int 33(3):283–289

    PubMed  CAS  Google Scholar 

  93. Zemann N, Klein P, Wetzel E, Huettinger F et al (2010) Lactoferrin induces growth arrest and nuclear accumulation of Smad-2 in HeLa cells. Biochimie 92(7):880–884

    PubMed  CAS  Google Scholar 

  94. Kawata K, Kubota S, Eguchi T, Moritani NH et al (2010) Role of the low-density lipoprotein receptor-related protein-1 in regulation of chondrocyte differentiation. J Cell Physiol 222(1):138–148

    PubMed  CAS  Google Scholar 

  95. Kawata K, Eguchi T, Kubota S, Kawaki H et al (2006) Possible role of LRP1, a CCN2 receptor, in chondrocytes. Biochem Biophys Res Commun 345(2):552–559

    PubMed  CAS  Google Scholar 

  96. Ono T, Murakoshi M, Suzuki N, Iida N et al (2010) Potent anti-obesity effect of enteric-coated lactoferrin: decrease in visceral fat accumulation in Japanese men and women with abdominal obesity after 8-week administration of enteric-coated lactoferrin tablets. Br J Nutr 104(11):1688–1695

    PubMed  CAS  Google Scholar 

  97. Yagi M, Suzuki N, Takayama T, Arisue M et al (2008) Lactoferrin suppress the adipogenic differentiation of MC3T3-G2/PA6 cells. J Oral Sci 50(4):419–425

    PubMed  CAS  Google Scholar 

  98. Ono T, Morishita S, Fujisaki C, Ohdera M et al (2011) Effects of pepsin and trypsin on the anti-adipogenic action of lactoferrin against pre-adipocytes derived from rat mesenteric fat. Br J Nutr 105(2):200–211

    PubMed  CAS  Google Scholar 

  99. Moreno-Navarrete JM, Ortega FJ, Ricart W, Fernandez-Real JM (2009) Lactoferrin increases (172Thr)AMPK phosphorylation and insulin-induced (p473Ser)AKT while impairing adipocyte differentiation. Int J Obes (Lond) 33(9):991–1000

    CAS  Google Scholar 

  100. Hu K, Li J, Shen Y, Lu W et al (2009) Lactoferrin-conjugated PEG-PLA nanoparticles with improved brain delivery: in vitro and in vivo evaluations. J Control Release 134(1):55–61

    PubMed  CAS  Google Scholar 

  101. Maneva A, Taleva B, Manev V, Sirakov L (1993) Lactoferrin binding to human platelets. Int J Biochem 25(5):707–712

    PubMed  CAS  Google Scholar 

  102. Mazoyer E, Levy-Toledano S, Rendu F, Hermant L et al (1990) KRDS, a new peptide derived from human lactotransferrin, inhibits platelet aggregation and release reaction. Eur J Biochem 194(1):43–49

    PubMed  CAS  Google Scholar 

  103. Rochard E, Legrand D, Lecocq M, Hamelin R (1992) Characterization of lactotransferrin receptor in epithelial cell lines from non-malignant human breast, benign mastopathies and breast carcinomas. Anticancer Res 12(6B):2047–2051

    PubMed  CAS  Google Scholar 

  104. Rejman JJ, Turner JD, Oliver SP (1994) Characterization of lactoferrin binding to the MAC-T bovine mammary epithelial cell line using a biotin-avidin technique. Int J Biochem 26(2):201–206

    PubMed  CAS  Google Scholar 

  105. Ghio AJ, Carter JD, Dailey LA, Devlin RB et al (1999) Respiratory epithelial cells demonstrate lactoferrin receptors that increase after metal exposure. Am J Physiol 276(6 Pt 1):L933–L940

    PubMed  CAS  Google Scholar 

  106. Elfinger M, Maucksch C, Rudolph C (2007) Characterization of lactoferrin as a targeting ligand for nonviral gene delivery to airway epithelial cells. Biomaterials 28(23):3448–3455

    PubMed  CAS  Google Scholar 

  107. van Berkel PH, Geerts ME, van Veen HA, Mericskay M et al (1997) N-terminal stretch Arg2, Arg3, Arg4 and Arg5 of human lactoferrin is essential for binding to heparin, bacterial lipopolysaccharide, human lysozyme and DNA. Biochem J 328(Pt 1):145–151

    PubMed  Google Scholar 

  108. Penco S, Scarfi S, Giovine M, Damonte G et al (2001) Identification of an import signal for, and the nuclear localization of, human lactoferrin. Biotechnol Appl Biochem 34(Pt 3):151–159

    PubMed  CAS  Google Scholar 

  109. Garre C, Bianchi-Scarra G, Sirito M, Musso M et al (1992) Lactoferrin binding sites and nuclear localization in K562(S) cells. J Cell Physiol 153(3):477–482

    PubMed  CAS  Google Scholar 

  110. He J, Furmanski P (1995) Sequence specificity and transcriptional activation in the binding of lactoferrin to DNA. Nature 373(6516):721–724

    PubMed  CAS  Google Scholar 

  111. Mariller C, Benaissa M, Hardiville S, Breton M et al (2007) Human delta-lactoferrin is a transcription factor that enhances Skp1 (S-phase kinase-associated protein) gene expression. FEBS J 274(8):2038–2053

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiharu Takayama .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Takayama, Y. (2012). Lactoferrin as a Signaling Mediator. In: Lactoferrin and its Role in Wound Healing. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2467-9_4

Download citation

Publish with us

Policies and ethics