Skip to main content

Carbon Nanotubes Applications: Solar and Fuel Cells, Hydrogen Storage, Lithium Batteries, Supercapacitors, Nanocomposites, Gas, Pathogens, Dyes, Heavy Metals and Pesticides

  • Chapter
  • First Online:
Book cover Environmental Chemistry for a Sustainable World

Abstract

Energy and environment are major global issues inducing environmental pollution. Energy generation from conventional fossil fuels has been identified as the main culprit of environmental degradation from global warming effects, in addition to environmental pollution which arises from rapid industrialization and agricultural development. In order to address these issues, nanotechnology plays an essential role in revolutionizing the applications for energy conversion and storage, environmental monitoring, as well as green engineering of environmental friendly materials. Carbon nanotubes and their hybrid nanocomposites have received immense research attention for their potential applications in various fields due to their unique structural, electronic, and mechanical properties. Here, we review the applications of carbon nanotubes (i) in energy conversion and storage as in solar cells, fuel cells, hydrogen storage, lithium ion batteries, and electrochemical supercapacitors, (ii) in environmental monitoring and wastewater treatment as in the detection and removal of gas pollutants, pathogens, dyes, heavy metals, and pesticides, and (iii) in green nanocomposite design. Integration of carbon nanotubes in solar cells and fuel cells has increased the energy conversion efficiency of these energy conversion applications, which serve as the future sustainable energy sources. Carbon nanotubes doped with metal hydrides show high hydrogen storage capacity of around 6 wt% as a potential hydrogen storage medium. Carbon nanotubes nanocomposites have exhibited high energy capacity in lithium ion batteries and high specific capacitance in electrochemical supercapacitors, in addition to excellent cycle stability. High sensitivity and selectivity towards the detection of environmental pollutants is demonstrated by carbon nanotubes based sensors, as well as the anticipated potentials of carbon nanotubes as adsorbent to remove environmental pollutants, which show high adsorption capacity and good regeneration capability. Carbon nanotubes are employed as reinforcement material in green nanocomposites, which is advantageous in supplying the desired properties, in addition to the biodegradability. This paper presents an overview of the advantages imparted by carbon nanotubes in electrochemical devices of energy applications and green nanocomposites, as well as nanosensor and adsorbent for environmental protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CNTs:

Carbon Nanotubes

CV:

Cyclic Voltammetry

DMFC:

Direct Methanol Fuel Cell

DSSC:

Dye-Sensitized Solar Cell

ITO:

Indium-Tin Oxide

MEA:

Membrane Electrode Assembly

MWCNTs:

Multi-Walled Carbon Nanotubes

OTE:

Optically Transparent Electrode

PEMFC:

Polymer Electrolyte Membrane Fuel Cell

Pt:

Platinum

QDSC:

Quantum Dot-Sensitized Solar Cell

Ru(II):

Ruthenium Metalorganic Dye

SnO2 :

Tin Oxide

SWCNTs:

Single-Walled Carbon Nanotubes

TiO2 :

Titanium Dioxide

VXC72R:

Vulcan XC72R

WO3 :

Tungsten Oxide

References

  • Ajayan PM (1999) Nanotubes from carbon. Chem Rev 99:1787–1800. doi:10.1021/cr970102g

    Article  CAS  Google Scholar 

  • Akasaka T, Watari F (2009) Capture of bacteria by flexible carbon nanotubes. Acta Biomater 5:607–612. doi: 10.1016/j.actbio.2008.08.014

    Article  CAS  Google Scholar 

  • Ando Y, Iijima S (1993) Preparation of carbon nanotubes by arc-discharge evaporation. Jpn J Appl Phys 32:L107–L109. doi: 10.1143/JJAP.32.L107

    Article  CAS  Google Scholar 

  • Antolini E (2009) Carbon supports for low-temperature fuel cell catalysts. Appl Catal B Environ 88:1–24. doi: 10.1016/j.apcatb.2008.09.030

    Article  CAS  Google Scholar 

  • Bai H, Shi G (2007) Gas sensors based on conducting polymers. Sensors 7:267–307. doi: 10.3390/s7030267

    Article  CAS  Google Scholar 

  • Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1:180–192. doi: 10.1002/smll.200400118

    Article  CAS  Google Scholar 

  • Balasubramanian K, Burghard M (2008) Electrochemically functionalized carbon nanotubes for device applications. J Mater Chem 18:3071–3083. doi: 10.1039/b718262g

    Article  CAS  Google Scholar 

  • Banks CE, Compton RG (2006) New electrodes for old: from carbon nanotubes to edge plane pyrolytic graphite. Analyst 131:15–21. doi: 10.1039/b512688f

    Article  CAS  Google Scholar 

  • Barisci JN, Wallace GG, Baughman RH (2000) Electrochemical studies of single-wall carbon nanotubes in aqueous solutions. J Electroanal Chem 488:92–98. doi: 10.1016/S0022-0728(00)00179-0

    Article  CAS  Google Scholar 

  • Barsan N, Koziej D, Weimar U (2007) Metal oxide-based gas sensor research: how to? Sensor Actuator B Chem 121:18–35. doi: 10.1016/j.snb.2006.09.047

    Article  CAS  Google Scholar 

  • Bashkin VN (2003) Sources of environmental pollution in Asia. In: Environmental chemistry: Asian lessons. Springer, Dordrecht, pp 3–24. doi: 10.1007/0-306-48020-4

    Google Scholar 

  • Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes – the route toward applications. Science 297:787–792. doi: 10.1126/science.1060928

    Article  CAS  Google Scholar 

  • Bhatnagar A, Sillanpää M (2009) Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater – a short review. Adv Colloid Interface Sci 152:26–38. doi: 10.1016/j.cis.2009.09.003

    Article  CAS  Google Scholar 

  • Biokam Co (2008) Life cycle economy. Eurokam S.r.o. Available via http://www.eurokamczech.com/Biokam/Biokam/web/Life-Cycle%20Economy.html. Accessed 20 Mar 2010

  • Bittencourt C, Felten A, Espinosa EH, Ionescu R, Llobet E, Correig X, Pireaux JJ (2006) WO3 films modified with functionalised multi-wall carbon nanotubes: morphological, compositional and gas response studies. Sensor Actuator B Chem 115:33–41. doi: 10.1016/j.snb.2005.07.067

    Article  CAS  Google Scholar 

  • Brady-Estévez AS, Kang S, Elimelech M (2008) A single-walled-carbon-nanotube filter for removal of viral and bacterial pathogens. Small 4:481–484. doi: 10.1002/smll.200700863

    Article  CAS  Google Scholar 

  • Brown P, Takechi K, Kamat PV (2008) Single-walled carbon nanotube scaffolds for dye-sensitized solar cells. J Phys Chem C 112:4776–4782. doi: 10.1021/jp7107472

    Article  CAS  Google Scholar 

  • Camponeschi E, Vance R, Al-Haik M, Garmestani H, Tannenbaum R (2007) Properties of carbon nanotube-polymer composites aligned in a magnetic field. Carbon 45:2037–2046. doi: 10.1016/j.carbon.2007.05.024

    Article  CAS  Google Scholar 

  • Chakoli AN, Wan J, Feng JT, Amirian M, Sui JH, Cai W (2009) Functionalization of multiwalled carbon nanotubes for reinforcing of poly(l-lactide-co-ε-caprolactone) biodegradable copolymers. Appl Surf Sci 256:170–177. doi: 10.1016/j.apsusc.2009.07.103

    Article  CAS  Google Scholar 

  • Charlier JC (2002) Defects in carbon nanotubes. Acc Chem Res 35:1063–1069. doi: 10.1021/ar010166k

    Article  CAS  Google Scholar 

  • Chatterjee S, Lee MW, Woo SH (2010) Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes. Bioresour Technol 101:1800–1806. doi: 10.1016/j.biortech.2009.10.051

    Article  CAS  Google Scholar 

  • Che G, Lakshmi BB, Martin CR, Fisher ER, Ruoff RS (1998) Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method. Chem Mater 10:260–267. doi: 10.1021/cm970412f

    Article  CAS  Google Scholar 

  • Chen J, Hamon MA, Hu H, Chen Y, Rao AM, Eklund PC, Haddon RC (1998) Solution properties of single-walled carbon nanotubes. Science 282:95–98. doi: 10.1126/science.282.5386.95

    Article  CAS  Google Scholar 

  • Chen J, Miao Y, He N, Wu X, Li S (2004) Nanotechnology and biosensors. Biotechnol Adv 22:505–518. doi: 10.1016/j.biotechadv.2004.03.004

    Article  CAS  Google Scholar 

  • Chen H, Zuo X, Su S, Tang Z, Wu A, Song S, Zhang D, Fan C (2008) An electrochemical sensor for pesticide assays based on carbon nanotube-enhanced acetycholinesterase activity. Analyst 133:1182–1186. doi: 10.1039/b805334k

    Article  CAS  Google Scholar 

  • Choi W, Lee JY, Jung BH, Lim HS (2004) Microstructure and electrochemical properties of a nanometer-scale tin anode for lithium secondary batteries. J Power Source 136:154–159. doi: 10.1016/j.jpowsour.2004.05.026

    Article  CAS  Google Scholar 

  • Coleman JN, Dalton AB, Curran S, Rubio A, Davey AP, Drury A, McCarthy B, Lahr B, Ajayan PM, Roth S, Barklie RC, Blau WJ (2000) Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer. Adv Mater 12:213–216. doi:10.1002/(SICI)1521-4095(200002)12:3<213::AID-ADMA213>3.0.CO;2-D

    Article  CAS  Google Scholar 

  • Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97:1061–1085. doi: 10.1016/j.biortech.2005.05.001

    Article  CAS  Google Scholar 

  • Cui G, Gu L, Kaskhedikar N, van Aken PA, Maier J (2010) A novel germanium/carbon nanotubes nanocomposite for lithium storage material. Electrochim Acta 55:985–988. doi: 10.1016/j.electacta.2009.08.056

    Article  CAS  Google Scholar 

  • Dag S, Ozturk Y, Ciraci S, Yildirim T (2005) Adsorption and dissociation of hydrogen molecules on bare and functionalized carbon nanotubes. Phys Rev B 72:155404. doi: 10.1103/PhysRevB.72.155404

    Article  CAS  Google Scholar 

  • Dai J, Wang Q, Li W, Wei Z, Xu G (2007) Properties of well aligned SWNT modified poly (methyl methacrylate) nanocomposites. Mater Lett 61:27–29. doi: 10.1016/j.matlet.2006.03.156

    Article  CAS  Google Scholar 

  • Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–379. doi: 10.1038/386377a0

    Article  CAS  Google Scholar 

  • Dong M, Ma Y, Zhao E, Qian C, Han L, Jiang S (2009) Using multiwalled carbon nanotubes as solid phase extraction adsorbents for determination of chloroacetanilide herbicides in water. Microchim Acta 165:123–128. doi: 10.1007/s00604-008-0109-z

    Article  CAS  Google Scholar 

  • Du C, Pan N (2006) Supercapacitors using carbon nanotubes films by electrophoretic deposition. J Power Source 160:1487–1494. doi: 10.1016/j.jpowsour.2006.02.092

    Article  CAS  Google Scholar 

  • Du D, Huang X, Cai J, Zhang A (2007) Comparison of pesticide sensitivity by electrochemical test based on acetylcholinesterase biosensor. Biosens Bioelectron 23:285–289. doi: 10.1016/j.bios.2007.05.002

    Article  CAS  Google Scholar 

  • Du D, Wang M, Zhang J, Cai J, Tu H, Zhang A (2008) Application of multiwalled carbon nanotubes for solid-phase extraction of organophosphate pesticide. Electrochem Commun 10:85–89. doi: 10.1016/j.elecom.2007.11.005

    Article  CAS  Google Scholar 

  • Du G, Zhong C, Zhang P, Guo Z, Chen Z, Liu H (2010) Tin dioxide/carbon nanotube composites with high uniform SnO2 loading as anode materials for lithium ion batteries. Electrochim Acta 55:2582–2586. doi: 10.1016/j.electacta.2009.12.031

    Article  CAS  Google Scholar 

  • Durgun E, Ciraci S, Yildirim T (2008) Functionalization of carbon-based nanostructures with light transition-metal atoms for hydrogen storage. Phys Rev B 77:085405. doi: 10.1103/PhysRevB.77.085405

    Article  CAS  Google Scholar 

  • Endo M, Strano MS, Ajayan PM (2008) Potential applications of carbon nanotubes. In: Jorio A, Dresselhaus G, Dresselhaus MS (eds) Carbon nanotubes, topics in applied physics, vol 111. Springer, Berlin/Heidelberg, pp 13–61. doi: 10.1007/978-3-540-72865-8_2

    Chapter  Google Scholar 

  • Fam DWH, Tok AIY, Palaniappan A, Nopphawan P, Lohani A, Mhaisalkar SG (2009) Selective sensing of hydrogen sulphide using silver nanoparticle decorated carbon nanotubes. Sensor Actuator B Chem 138:189–192. doi: 10.1016/j.snb.2009.01.008

    Article  CAS  Google Scholar 

  • Fan B, Mei X, Sun K, Ouyang J (2008) Conducting polymer/carbon nanotube composite as counter electrode of dye-sensitized solar cells. Appl Phys Lett 93:143103. doi: 10.1063/1.2996270

    Article  CAS  Google Scholar 

  • Frackowiak E, Béguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950. doi: 10.1016/S0008-6223(00)00183-4

    Article  CAS  Google Scholar 

  • Frackowiak E, Delpeux S, Jurewicz K, Szostak K, Cazorla-Amoros D, Béguin F (2002) Enhanced capacitance of carbon nanotubes through chemical activation. Chem Phys Lett 361:35–41. doi: 10.1016/S0009-2614(02)00684-X

    Article  CAS  Google Scholar 

  • Ganjali MR, Motakef-Kazami N, Faridbod F, Khoee S, Norouzi P (2010) Determination of Pb2+ ions by a modified carbon paste electrode based on multi-walled carbon nanotubes (MWCNTs) and nanosilica. J Hazard Mater 173:415–419. doi: 10.1016/j.jhazmat.2009.08.101

    Article  CAS  Google Scholar 

  • Gao B, Kleinhammes A, Tang XP, Bower C, Fleming L, Wu Y, Zhou O (1999) Electrochemical intercalation of single-walled carbon nanotubes with lithium. Chem Phys Lett 307:153–157. doi: 10.1016/S0009-2614(99)00486-8

    Article  CAS  Google Scholar 

  • Gao B, Bower C, Lorentzen JD, Fleming L, Kleinhammes A, Tang XP, McNeil LE, Wu Y, Zhou O (2000) Enhanced saturation lithium composition in ball-milled single-walled carbon nanotubes. Chem Phys Lett 327:69–75. doi: 10.1016/S0009-2614(00)00851-4

    Article  CAS  Google Scholar 

  • Gao Y, Kyratzis I, Taylor R, Huynh C, Hickey M (2009) Immobilization of acetylcholinesterase onto carbon nanotubes utilizing streptavidin-biotin interaction for the construction of amperometric biosensors for pesticides. Anal Lett 42:2711–2727. doi: 10.1080/00032710903243661

    Article  CAS  Google Scholar 

  • Garmestani H, Al-Haik MS, Dahmen K, Tannenbaum R, Li D, Sablin SS, Hussaini MY (2003) Polymer-mediated alignment of carbon nanotubes under high magnetic fields. Adv Mater 15:1918–1921. doi: 10.1002/adma.200304932

    Article  CAS  Google Scholar 

  • Goldoni A, Larciprete R, Petaccia L, Lizzit S (2003) Single-wall carbon nanotube interaction with gases: sample contaminants and environmental monitoring. J Am Chem Soc 125:11329–11333. doi: 10.1021/ja034898e

    Article  CAS  Google Scholar 

  • Goldoni A, Petaccia L, Gregoratti L, Kaulich B, Barinov A, Lizzit S, Laurita A, Sangaletti L, Larciprete R (2004) Spectroscopic characterization of contaminants and interaction with gases in single-walled carbon nanotubes. Carbon 42:2099–2112. doi: 10.1016/j.carbon.2004.04.011

    Article  CAS  Google Scholar 

  • Goldoni A, Petaccia L, Lizzit S, Larciprete R (2010) Sensing gases with carbon nanotubes: a review of the actual situation. J Phys Condens Matter 22:013001. doi: 10.1088/0953-8984/22/1/013001

    Article  CAS  Google Scholar 

  • Gong K, Yan Y, Zhang M, Su L, Xiong S, Mao L (2005) Electrochemistry and electroanalytical applications of carbon nanotubes: a review. Anal Sci 21:1383–1393. doi: 10.2116/analsci.21.1383

    Article  CAS  Google Scholar 

  • Gooding JJ, Chou A, Liu J, Losic D, Shapter JG, Hibbert DB (2007) The effects of the lengths and orientations of single-walled carbon nanotubes on the electrochemistry of nanotube-modified electrodes. Electrochem Commun 9:1677–1683. doi: 10.1016/j.elecom.2007.03.023

    Article  CAS  Google Scholar 

  • Graetz J, Ahn CC, Yazami R, Fultz B (2004) Nanocrystalline and thin film germanium electrodes with high lithium capacity and high rate capabilities. J Electrochem Soc 151:A698–A702. doi: 10.1149/1.1697412

    Article  CAS  Google Scholar 

  • Grätzel M (2004) Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photochem Photobiol A Chem 164:3–14. doi: 10.1016/j.jphotochem.2004.02.023

    Article  CAS  Google Scholar 

  • Green MA (2002) Third generation photovoltaics: solar cells for 2020 and beyond. Physica E 14:65–70. doi: 10.1016/S1386-9477(02)00361-2

    Article  CAS  Google Scholar 

  • Green MA, Emery K, Hishikawa Y, Warta W (2008) Short communication solar cell: efficiency tables (version 31). Prog Photovolt 16:61–67. doi: 10.1002/pip. 808

    Article  Google Scholar 

  • Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE (1995) Catalytic growth of single-walled manotubes by laser vaporization. Chem Phys Lett 243:49–54. doi: 10.1016/0009-2614(95)00825-O

    Article  CAS  Google Scholar 

  • Hamon MA, Chen J, Hu H, Chen Y, Itkis ME, Rao AM, Eklund PC, Haddon RC (1999) Dissolution of single-walled carbon nanotubes. Adv Mater 11:834–840. doi:10.1002/(SICI)1521-4095(199907)11:10<834::AID-ADMA834>3.0.CO;2-R

    Article  CAS  Google Scholar 

  • Harris PJF (1999) Carbon nanotubes and related structures. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • He L, Jia Y, Meng F, Li M, Liu J (2009) Gas sensors for ammonia detection based on polyaniline-coated multi-wall carbon nanotubes. Mater Sci Eng B Adv 163:76–81. doi: 10.1016/j.mseb.2009.05.009

    Article  CAS  Google Scholar 

  • He Y, Huang L, Cai JS, Zheng XM, Sun SG (2010) Structure and electrochemical performance of nanostructured Fe3O4/carbon nanotube composites as anodes for lithium ion batteries. Electrochim Acta 55:1140–1144. doi: 10.1016/j.electacta.2009.10.014

    Article  CAS  Google Scholar 

  • Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chem Int Edit 41:1853–1859. doi:10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N

    Article  CAS  Google Scholar 

  • Hoa ND, Quy NV, Kim D (2009) Nanowire structured SnOx-SWNT composites: high performance sensor for NOx detection. Sensor Actuat B-Chem 142:253–259. doi: 10.1016/j.snb.2009.07.053

    Article  CAS  Google Scholar 

  • Holzinger M, Vostrowsky O, Hirsch A, Hennrich F, Kappes M, Weiss R, Jellen F (2001) Sidewall functionalization of carbon nanotubes. Angew Chem Int Edit 40:4002–4005. doi:10.1002/1521-3773(20011105)40:21<4002::AID-ANIE4002>3.0.CO;2-8

    Article  CAS  Google Scholar 

  • Hu Y-S, Kienle L, Guo Y-G, Maier J (2006) High lithium electroactivity of nanometer-sized rutile TiO2. Adv Mater 18:1421–1426. doi: 10.1002/adma.200502723

    Article  CAS  Google Scholar 

  • Hu Y-S, Demir-Cakan R, Titirici M-M, Müller J-O, Schlögl R, Antonietti M, Maier J (2008) Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. Angew Chem Int Edit 47:1645–1649. doi: 10.1002/anie.200704287

    Article  CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. doi: 10.1038/354056a0

    Article  CAS  Google Scholar 

  • Imahori H, Umeyama T (2009) Donor-acceptor nanoarchitecture on semiconducting electrodes for solar energy conversion. J Phys Chem C 113:9029–9039. doi: 10.1021/jp9007448

    Article  CAS  Google Scholar 

  • Injang U, Noyrod P, Siangproh W, Dungchai W, Motomizu S, Chailapakul O (2010) Determination of trace heavy metals in herbs by sequential injection analysis-anodic stripping voltammetry using screen-printed carbon nanotubes electrodes. Anal Chim Acta 668:54–60. doi: 10.1016/j.aca.2010.01.018

    Article  CAS  Google Scholar 

  • Ismail BS, Farihah K, Khairiah J (2005) Bioaccumulation of heavy metals in vegetables from selected agricultural areas. B Environ Contam Toxicol 74:320–327. doi: 10.1007/s00128-004-0587-6

    Article  CAS  Google Scholar 

  • Iyakutti K, Kawazoe Y, Rajarajeswari M, Surya VJ (2009) Aluminum hydride coated single-walled carbon nanotube as a hydrogen storage medium. Int J Hydrog Energy 34:370–375. doi: 10.1016/j.ijhydene.2008.09.086

    Article  CAS  Google Scholar 

  • Janegitz BC, Marcolino-Junior LH, Campana-Filho SP, Faria RC, Fatibello-Filho O (2009) Anodic stripping voltammetric determination of copper(II) using a functionalized carbon nanotubes paste electrode modified with crosslinked chitosan. Sensor Actuator B Chem 142:260–266. doi: 10.1016/j.snb.2009.08.033

    Article  CAS  Google Scholar 

  • Jha N, Leela Mohana Reddy A, Shaijumon MM, Rajalakshmi N, Ramaprabhu S (2008) Pt-Ru/multi-walled carbon nanotubes as electrocatalysts for direct methanol fuel cell. Int J Hydrog Energy 33:427–433. doi: 10.1016/j.ijhydene.2007.07.064

    Article  CAS  Google Scholar 

  • Jiang Q, Qu MZ, Zhou GM, Zhang BL, Yu ZL (2002) A study of activated carbon nanotubes as electrochemical super capacitors electrode materials. Mater Lett 57:988–991. doi: 10.1016/S0167-577X(02)00911-4

    Article  CAS  Google Scholar 

  • Kamat PV (2008) Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phys Chem C 112:18737–18753. doi: 10.1021/jp806791s

    Article  CAS  Google Scholar 

  • Kamat PV, Haria M, Hotchandani S (2004) C60 cluster as an electron shuttle in a Ru(II)-polypyridyl sensitizer-based photochemical solar cell. J Phys Chem B 108:5166–5170. doi: 10.1021/jp0496699

    Article  CAS  Google Scholar 

  • Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151:362–367. doi: 10.1016/j.envpol.2007.06.012

    Article  CAS  Google Scholar 

  • Kandimalla VB, Ju H (2006) Binding of acetylcholinesterase to multiwall carbon nanotube-cross-linked chitosan composite for flow-injection amperometric detection of an organophosphorous insecticide. Chem Eur J 12:1074–1080. doi: 10.1002/chem.200500178

    Article  CAS  Google Scholar 

  • Ke G, Guan W, Tang C, Zeng D, Deng F (2007) Covalent functionalization of multiwalled carbon nanotubes with a low molecular weight chitosan. Biomacromolecules 8:322–326. doi: 10.1021/bm0604146

    Article  CAS  Google Scholar 

  • Kimura T, Ago H, Tobita M, Ohshima S, Kyotani M, Yumura M (2002) Polymer composites of carbon nanotubes aligned by a magnetic field. Adv Mater 14:1380–1383. doi:10.1002/1521-4095(20021002)14:19<1380::AID-ADMA1380>3.0.CO;2-V

    Article  CAS  Google Scholar 

  • Kolybaba M, Tabil LG, Panigrahi S, Crerar WJ, Powell T, Wang B (2003) Biodegradable polymers: past, present, and future. In: 2003 CSAE/ASAE annual intersectional meeting, Paper No. RRV03-0007, Fargo, North Dakota

    Google Scholar 

  • Kongkanand A, Kamat PV (2007) Electron storage in single wall carbon nanotubes. Fermi level equilibration in semiconductor-SWCNT suspensions. ACS Nano 1:13–21. doi: 10.1021/nn700036f

    Article  CAS  Google Scholar 

  • Krstic V, Duesberg GS, Muster J, Burghard M, Roth S (1998) Langmuir-Blodgett films of matrix-diluted single-walled carbon nanotubes. Chem Mater 10:2338–2340. doi: 10.1021/cm980207f

    Article  CAS  Google Scholar 

  • Kymakis E (2006) The impact of carbon nanotubes on solar energy conversion. Nanotechnol Law Bus 3:405–410

    Google Scholar 

  • Lahiri D, Rouzaud F, Namin S, Keshri AK, Valdes JJ, Kos L, Tsoukias N, Agarwal A (2009) Carbon nanotube reinforced polylactide-caprolactone copolymer: mechanical strengthening and interaction with human osteoblasts in vitro. ACS Appl Mater Interface 1:2470–2476. doi: 10.1021/am900423q

    Article  CAS  Google Scholar 

  • Landi BJ, Ganter MJ, Cress CD, DiLeo RA, Raffaelle RP (2009) Carbon nanotubes for lithium ion batteries. Energy Environ Sci 2:638–654. doi: 10.1039/b904116h

    Article  CAS  Google Scholar 

  • Lee TY, Alegaonkar PS, Yoo J-B (2007) Fabrication of dye sensitized solar cell using TiO2 coated carbon nanotubes. Thin Solid Films 515:5131–5135. doi: 10.1016/j.tsf.2006.10.056

    Article  CAS  Google Scholar 

  • Lee W, Lee J, Lee S, Yi W, Han S-H, Cho BW (2008) Enhanced charge collection and reduced recombination of CdS/TiO2 quantum-dots sensitized solar cells in the presence of single-walled carbon nanotubes. Appl Phys Lett 92:153510. doi: 10.1063/1.2911740

    Article  CAS  Google Scholar 

  • Lee SU, Choi WS, Hong B (2009a) A comparative study of dye-sensitized solar cells added carbon nanotubes to electrolyte and counter electrodes. Sol Energy Mater Sol Cells 94:680–685. doi: 10.1016/j.solmat.2009.11.030

    Article  CAS  Google Scholar 

  • Lee W, Lee J, Min SK, Park T, Yi W, Han SH (2009b) Effect of single-walled carbon nanotube in PbS/TiO2 quantum dots-sensitized solar cells. Mater Sci Eng B Adv 156:48–51. doi: 10.1016/j.mseb.2008.11.014

    Article  CAS  Google Scholar 

  • Leghrib R, Pavelko R, Felten A, Vasiliev A, Cané C, Gràcia I, Pireaux JJ, Llobet E (2010) Gas sensors based on multiwall carbon nanotubes decorated with tin oxide nanoclusters. Sensor Actuator B Chem 145:411–416. doi: 10.1016/j.snb.2009.12.044

    Article  CAS  Google Scholar 

  • Li L, Xing Y (2006) Electrochemical durability of carbon nanotubes in noncatalyzed and catalyzed oxidations. J Electrochem Soc 153:A1823–A1828. doi: 10.1149/1.2234659

    Article  CAS  Google Scholar 

  • Li YH, Wang S, Wei J, Zhang X, Xu C, Luan Z, Wu D, Wei B (2002) Lead adsorption on carbon nanotubes. Chem Phys Lett 357:263–266. doi: 10.1016/S0009-2614(02)00502-X

    Article  CAS  Google Scholar 

  • Li W, Liang C, Zhou W, Qiu J, Zhou SG, Xin Q (2003) Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. J Phys Chem B 107:6292–6299. doi: 10.1021/jp022505c

    Article  CAS  Google Scholar 

  • Li X, Qiu X, Zhao L, Chen L, Zhu W (2009) Development of composite anode electrocatalyst for direct methanol fuel cells. J Appl Electrochem 39:1779–1787. doi: 10.1007/s10800-009-9877-3

    Article  CAS  Google Scholar 

  • Lim KL, Kazemian H, Yaakob Z, Daud WRW (2010) Solid-state materials and methods for hydrogen storage: a critical review. Chem Eng Technol 33:213–226. doi: 10.1002/ceat.200900376

    Article  CAS  Google Scholar 

  • Lin JF, Kamavaram V, Kannan AM (2010) Synthesis and characterization of carbon nanotubes supported platinum nanocatalyst for proton exchange membrane fuel cells. J Power Source 195:466–470. doi: 10.1016/j.jpowsour.2009.07.055

    Article  CAS  Google Scholar 

  • Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS (1999) Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 286:1127–1129. doi: 10.1126/science.286.5442.1127

    Article  CAS  Google Scholar 

  • Liu J, Chou A, Rahmat W, Paddon-Row MN, Gooding JJ (2005) Achieving direct electrical connection to glucose oxidase using aligned single walled carbon nanotube arrays. Electroanalysis 17:38–46. doi: 10.1002/elan.200403116

    Article  CAS  Google Scholar 

  • Liu J, Cao G, Yang Z, Wang D, Dubois D, Zhou X, Graff GL, Pederson LR, Zhang JG (2008a) Oriented nanostructures for energy conversion and storage. ChemSusChem 1:676–697. doi: 10.1002/cssc.200800087

    Article  CAS  Google Scholar 

  • Liu J, Guo Z, Meng F, Jia Y (2008b) A novel antimony-carbon nanotube-tin oxide thin film: carbon nanotubes as growth guider and energy buffer. Application for indoor air pollutants gas sensor. J Phys Chem C 112:6119–6125. doi: 10.1021/jp712034w

    Article  CAS  Google Scholar 

  • Liu C, Chen Y, Wu CZ, Xu ST, Cheng HM (2010) Hydrogen storage in carbon nanotubes revisited. Carbon 48:452–455. doi: 10.1016/j.carbon.2009.09.060

    Article  CAS  Google Scholar 

  • Lochan RC, Head-Gordon M (2006) Computational studies of molecular hydrogen binding affinities: the role of dispersion forces, electrostatics, and orbital interactions. Phys Chem Chem Phys 8:1357–1370. doi: 10.1039/b515409j

    Article  CAS  Google Scholar 

  • Louie SG (2001) Electronic properties, junctions, and defects of carbon nanotubes. In: Dresselhaus MS, Dresselhaus G, Avouris P (eds) Carbon nanotubes, topics in applied physics, vol 80. Springer, Berlin/Heidelberg, pp 113–145. doi: 10.1007/3-540-39947-X_6

    Chapter  Google Scholar 

  • Lu X, Chen Z, PvR S (2004) Are stone-wales defect sites always more reactive than perfect sites in the sidewalls of single-wall carbon nanotubes? J Am Chem Soc 127:20–21. doi: 10.1021/ja0447053

    Article  CAS  Google Scholar 

  • Lu C, Chiu H, Liu C (2006) Removal of zinc(II) from aqueous solution by purified carbon nanotubes: kinetics and equilibrium studies. Ind Eng Chem Res 45:2850–2855. doi: 10.1021/ie051206h

    Article  CAS  Google Scholar 

  • Luo H, Shi Z, Li N, Gu Z, Zhuang Q (2001) Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. Anal Chem 73:915–920. doi: 10.1021/ac000967l

    Article  CAS  Google Scholar 

  • Masenelli-Varlot K, McRae E, Dupont-Pavlovsky N (2002) Comparative adsorption of simple molecules on carbon nanotubes - dependence of the adsorption properties on the nanotube morphology. Appl Surf Sci 196:209–215. doi: 10.1016/S0169-4332(02)00059-4

    Article  CAS  Google Scholar 

  • Mei X, Fan B, Sun K, Ouyang J (2009) High-performance dye-sensitized solar cells with nanomaterials as counter electrode. In: Nanoscale photonic and cell technologies for photovoltaics II, vol 7411, San Diego. doi: 10.1117/12.825858

    Google Scholar 

  • Merkoçi A (2006) Carbon nanotubes in analytical sciences. Microchim Acta 152:157–174. doi: 10.1007/s00604-005-0439-z

    Article  CAS  Google Scholar 

  • Miller JF, Farmer R, Dillich S, Satyapal S, Milliken J (2009) The US department of energy’s hydrogen production and storage program. In: Hydrogen symposium 2009, United States Department of Energy. Available via http://www.purdue.edu/dp/energy/events/2009hydrogen/presentations/Miller.pdf. Accessed 5 Mar 2010

  • Mirabile Gattia D, Antisari MV, Giorgi L, Marazzi R, Piscopiello E, Montone A, Bellitto S, Licoccia S, Traversa E (2009) Study of different nanostructured carbon supports for fuel cell catalysts. J Power Source 194:243–251. doi: 10.1016/j.jpowsour.2009.04.058

    Article  CAS  Google Scholar 

  • Misra SK, Watts PCP, Valappil SP, Silva SRP, Roy I, Boccaccini AR (2007) Poly(3-hydroxybutyrate)/Bioglass® composite films containing carbon nanotubes. Nanotechnology 18:075701. doi: 10.1088/0957-4484/18/7/075701

    Article  CAS  Google Scholar 

  • Monthioux M (2002) Filling single-wall carbon nanotubes. Carbon 40:1809–1823. doi: 10.1016/S0008-6223(02)00102-1

    Article  CAS  Google Scholar 

  • Monthioux M, Serp P, Flahaut E, Razafinimanana M, Laurent C, Peigney A, Bacsa W, Broto J-M (2007) Introduction to carbon nanotubes. In: Bhushan B (ed) Springer handbook of nanotechnology. Springer, Berlin/Heidelberg, pp 43–112. doi: 10.1007/978-3-540-29857-1_3

    Chapter  Google Scholar 

  • Moon S-IL, Paek K-K, Lee Y-H, Park H-K, Kim J-K, Kim S-W, Ju B-K (2008) Bias-heating recovery of MWCNT gas sensor. Mater Lett 62:2422–2425. doi: 10.1016/j.matlet.2007.12.027

    Article  CAS  Google Scholar 

  • Moreels I, Lambert K, De Muynck D, Vanhaecke F, Poelman D, Martins JC, Allan G, Hens Z (2007) Composition and size-dependent extinction coefficient of colloidal PbSe quantum dots. Chem Mater 19:6101–6106. doi: 10.1021/cm071410q

    Article  CAS  Google Scholar 

  • Moreels I, Lambert K, Smeets D, De Muynck D, Nollet T, Martins JC, Vanhaecke F, Vantomme A, Delerue C, Allan G, Hens Z (2009) Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano 3:3023–3030. doi: 10.1021/nn900863a

    Article  CAS  Google Scholar 

  • Morton J, Havens N, Mugweru A, Wanekaya AK (2009) Detection of trace heavy metal ions using carbon nanotube-modified electrodes. Electroanalysis 21:1597–1603. doi: 10.1002/elan.200904588

    Article  CAS  Google Scholar 

  • Mostafavi ST, Mehrnia MR, Rashidi AM (2009) Preparation of nanofilter from carbon nanotubes for application in virus removal from water. Desalination 238:271–280. doi: 10.1016/j.desal.2008.02.018

    Article  CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750. doi: 10.1007/s002530051457

    Article  CAS  Google Scholar 

  • Nozik AJ (2005) Exciton multiplication and relaxation dynamics in quantum dots: applications to ultrahigh-efficiency solar photon conversion. Inorg Chem 44:6893–6899. doi: 10.1021/ic0508425

    Article  CAS  Google Scholar 

  • Nuzzo JB (2006) The biological threat to U.S. water supplies: toward a national water security policy. Biosecur Bioterror Biodef Strategy Pract Sci 4:147–159. doi: 10.1089/bsp.2006.4.147

    Article  Google Scholar 

  • Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Source 157:11–27. doi: 10.1016/j.jpowsour.2006.02.065

    Article  CAS  Google Scholar 

  • Park S, Srivastava D, Cho K (2003) Generalized chemical reactivity of curved surfaces: carbon nanotubes. Nano Lett 3:1273–1277. doi: 10.1021/nl0342747

    Article  CAS  Google Scholar 

  • Pedrosa VA, Paliwal S, Balasubramanian S, Nepal D, Davis V, Wild J, Ramanculov E, Simonian A (2010) Enhanced stability of enzyme organophosphate hydrolase interfaced on the carbon nanotubes. Colloid Surf B 77:69–74. doi: 10.1016/j.colsurfb.2010.01.009

    Article  CAS  Google Scholar 

  • Penza M, Rossi R, Alvisi M, Signore MA, Cassano G, Dimaio D, Pentassuglia R, Piscopiello E, Serra E, Falconieri M (2009) Characterization of metal-modified and vertically-aligned carbon nanotube films for functionally enhanced gas sensor applications. Thin Solid Films 517:6211–6216. doi: 10.1016/j.tsf.2009.04.009

    Article  CAS  Google Scholar 

  • Penza M, Rossi R, Alvisi M, Serra E (2010) Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications. Nanotechnology 21:105501. doi: 10.1088/0957-4484/21/10/105501

    Article  CAS  Google Scholar 

  • Ramasamy E, Lee WJ, Lee DY, Song JS (2008) Spray coated multi-wall carbon nanotube counter electrode for tri-iodide reduction in dye-sensitized solar cells. Electrochem Commun 10:1087–1089. doi: 10.1016/j.elecom.2008.05.013

    Article  CAS  Google Scholar 

  • Rao GP, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol 58:224–231. doi: 10.1016/j.seppur.2006.12.006

    Article  CAS  Google Scholar 

  • Raymundo-Piñero E, Azaïs P, Cacciaguerra T, Cazorla-Amorós D, Linares-Solano A, Béguin F (2005) KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation. Carbon 43:786–795. doi: 10.1016/j.carbon.2004.11.005

    Article  CAS  Google Scholar 

  • Rodriguez NM, Chambers A, Baker RTK (1995) Catalytic engineering of carbon nanostructures. Langmuir 11:3862–3866. doi: 10.1021/la00010a042

    Article  CAS  Google Scholar 

  • Saito Y (1995) Nanoparticles and filled nanocapsules. Carbon 33:979–988. doi: 10.1016/0008-6223(95)00026-A

    Article  CAS  Google Scholar 

  • Sawatsuk T, Chindaduang A, Sae-kung C, Pratontep S, Tumcharern G (2009) Dye-sensitized solar cells based on TiO2-MWCNTs composite electrodes: performance improvement and their mechanisms. Diam Relat Mater 18:524–527. doi: 10.1016/j.diamond.2008.10.052

    Article  CAS  Google Scholar 

  • Shi Z, Lian Y, Liao F, Zhou X, Gu Z, Zhang Y, Iijima S (1999) Purification of single-wall carbon nanotubes. Solid State Commun 112:35–37. doi: 10.1016/S0038-1098(99)00278-1

    Article  CAS  Google Scholar 

  • Shih YF, Chen LS, Jeng RJ (2008) Preparation and properties of biodegradable PBS/multi-walled carbon nanotube nanocomposites. Polymer 49:4602–4611. doi: 10.1016/j.polymer.2008.08.015

    Article  CAS  Google Scholar 

  • Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854. doi: 10.1038/nmat2297

    Article  CAS  Google Scholar 

  • Sitharaman B, Shi X, Walboomers XF, Liao H, Cuijpers V, Wilson LJ, Mikos AG, Jansen JA (2008) In vivo biocompatibility of ultra-short single-walled carbon nanotube/biodegradable polymer nanocomposites for bone tissue engineering. Bone 43:362–370. doi: 10.1016/j.bone.2008.04.013

    Article  CAS  Google Scholar 

  • Sloan J, Kirkland AI, Hutchison JL, Green MLH (2002) Structural characterization of atomically regulated nanocrystals formed within single-walled carbon nanotubes using electron microscopy. Acc Chem Res 35:1054–1062. doi: 10.1021/ar010169x

    Article  CAS  Google Scholar 

  • Smalley RE (2005) Future global energy prosperity: the Terawatt Challenge. MRS Bull 30:412–417

    Article  Google Scholar 

  • Smith BW, Luzzi DE (2000) Formation mechanism of fullerene peapods and coaxial tubes: a path to large scale synthesis. Chem Phys Lett 321:169–174. doi: 10.1016/S0009-2614(00)00307-9

    Article  CAS  Google Scholar 

  • Sobkowicz MJ, Dorgan JR, Gneshin KW, Herring AM, McKinnon JT (2009) Supramolecular bioNanocomposites: grafting of biobased polylactide to carbon nanoparticle surfaces. Aust J Chem 62:865–870. doi: 10.1071/CH09097

    Article  CAS  Google Scholar 

  • Song L, Qiu Z (2009) Crystallization behavior and thermal property of biodegradable poly(butylene succinate)/functional multi-walled carbon nanotubes nanocomposite. Polym Degrad Stab 94:632–637. doi: 10.1016/j.polymdegradstab.2009.01.009

    Article  CAS  Google Scholar 

  • Surya VJ, Iyakutti K, Rajarajeswari M, Kawazoe Y (2009) Functionalization of single-walled carbon nanotube with borane for hydrogen storage. Physica E 41:1340–1346. doi: 10.1016/j.physe.2009.03.007

    Article  CAS  Google Scholar 

  • Surya VJ, Iyakutti K, Venkataramanan N, Mizuseki H, Kawazoe Y (2010) The role of Li and Ni metals in the adsorbate complex and their effect on the hydrogen storage capacity of single walled carbon nanotubes coated with metal hydrides, LiH and NiH2. Int J Hydrog Energy 35:2368–2376. doi: 10.1016/j.ijhydene.2010.01.001

    Article  CAS  Google Scholar 

  • Tang Z, Ng HY, Lin J, Wee ATS, Chua DHC (2010a) Pt/CNT-based electrodes with high electrochemical activity and stability for proton exchange membrane fuel cells. J Electrochem Soc 157:B245–B250. doi: 10.1149/1.3266933

    Article  CAS  Google Scholar 

  • Tang Z, Poh CK, Lee KK, Tian Z, Chua DHC, Lin J (2010b) Enhanced catalytic properties from platinum nanodots covered carbon nanotubes for proton-exchange membrane fuel cells. J Power Source 195:155–159. doi: 10.1016/j.jpowsour.2009.06.105

    Article  CAS  Google Scholar 

  • Umeyama T, Imahori H (2008) Carbon nanotube-modified electrodes for solar energy conversion. Energy Environ Sci 1:120–133. doi: 10.1039/b805419n

    Article  CAS  Google Scholar 

  • United States Department of Energy (2009) Types of fuel cells. Fuel cell technologies program, United States Department of Energy. Available via http://www1.eere.energy.gov/hydrogenandfuelcells/fuelcells/fc_types.html. Accessed 3 Mar 2010

  • Upadhyayula VKK, Deng S, Mitchell MC, Smith GB, Nair VK, Ghoshroy S (2008a) Adsorption kinetics of Escherichia coli and Staphylococcus aureus on single-walled carbon nanotube aggregates. Water Sci Technol 58:179–184. doi: 10.2166/wst.2008.634

    Article  CAS  Google Scholar 

  • Upadhyayula VKK, Ghoshroy S, Nair VS, Smith GB, Mitchell MC, Deng S (2008b) Single-walled carbon nanotubes as fluorescence biosensors for pathogen recognition in water systems. Res Lett Nanotechnol 2008:156358. doi: 10.1155/2008/156358

    Article  CAS  Google Scholar 

  • Vaccarini L, Goze C, Aznar R, Micholet V, Journet C, Bernier P (1999) Purification procedure of carbon nanotubes. Synth Met 103:2492–2493. doi: 10.1016/S0379-6779(98)01087-X

    Article  CAS  Google Scholar 

  • Vairavapandian D, Vichchulada P, Lay MD (2008) Preparation and modification of carbon nanotubes: review of recent advances and applications in catalysis and sensing. Anal Chim Acta 626:119–129. doi: 10.1016/j.aca.2008.07.052

    Article  CAS  Google Scholar 

  • Valentini L, Cantalini C, Armentano I, Kenny JM, Lozzi L, Santucci S (2004) Highly sensitive and selective sensors based on carbon nanotubes thin films for molecular detection. Diam Relat Mater 13:1301–1305. doi: 10.1016/j.diamond.2003.11.011

    Article  CAS  Google Scholar 

  • van der Schoot P, Popa-Nita V, Kralj S (2008) Alignment of carbon nanotubes in nematic liquid crystals. J Phys Chem B 112:4512–4518. doi: 10.1021/jp712173n

    Article  CAS  Google Scholar 

  • Wang Y, Liu H, Sun X, Zhitomirsky I (2009) Manganese dioxide-carbon nanotube nanocomposites for electrodes of electrochemical supercapacitors. Scripta Mater 61:1079–1082. doi: 10.1016/j.scriptamat.2009.08.040

    Article  CAS  Google Scholar 

  • Wei L, Shizhen H, Wenzhe C (2010) An MWCNT-doped SNO2 thin film NO2 gas sensor by RF reactive magnetron sputtering. J Semicond 31:024006. doi: 10.1088/1674-4926/31/2/024006

    Article  CAS  Google Scholar 

  • Wijewardane S (2009) Potential applicability of CNT and CNT/composites to implement ASEC concept: a review article. Sol Energy 83:1379–1389. doi: 10.1016/j.solener.2009.03.001

    Article  CAS  Google Scholar 

  • Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4270. doi: 10.1021/cr020730k

    Article  CAS  Google Scholar 

  • Wu C-H (2007) Adsorption of reactive dye onto carbon nanotubes: equilibrium, kinetics and thermodynamics. J Hazard Mater 144:93–100. doi: 10.1016/j.jhazmat.2006.09.083

    Article  CAS  Google Scholar 

  • Wu ZP, Xia BY, Wang XX, Wang JN (2010) Preparation of dispersible double-walled carbon nanotubes and application as catalyst support in fuel cells. J Power Source 195:2143–2148. doi: 10.1016/j.jpowsour.2009.10.013

    Article  CAS  Google Scholar 

  • Xu K, Pierce DT, Li A, Zhao JX (2008) Nanocatalysts in direct methanol fuel cell applications. Synth React Inorg Met Org Nano Met Chem 38:394–399. doi: 10.1080/15533170802132295

    CAS  Google Scholar 

  • Xu C, Sun J, Gao L (2009) Synthesis of multiwalled carbon nanotubes that are both filled and coated by SnO2 nanoparticles and their high performance in lithium-ion batteries. J Phys Chem C 113:20509–20513. doi: 10.1021/jp909740h

    Article  CAS  Google Scholar 

  • Yan J, Wei T, Fan Z, Qian W, Zhang M, Shen X, Wei F (2010) Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. J Power Source 195:3041–3045. doi: 10.1016/j.jpowsour.2009.11.028

    Article  CAS  Google Scholar 

  • Yang W, Omaye ST (2009) Air pollutants, oxidative stress and human health. Mutat Res Gen Toxicol Environ Mutagen 674:45–54. doi: 10.1016/j.mrgentox.2008.10.005

    Article  CAS  Google Scholar 

  • Yang Z-h, Wu H-q (2001) Electrochemical intercalation of lithium into raw carbon nanotubes. Mater Chem Phys 71:7–11. doi: 10.1016/S0254-0584(00)00512-5

    Article  CAS  Google Scholar 

  • Yang S, Song H, Chen X (2007) Nanosized tin and tin oxides loaded expanded mesocarbon microbeads as negative electrode material for lithium-ion batteries. J Power Source 173:487–494. doi: 10.1016/j.jpowsour.2007.08.009

    Article  CAS  Google Scholar 

  • Yang S, Song H, Yi H, Liu W, Zhang H, Chen X (2009) Carbon nanotube capsules encapsulating SnO2 nanoparticles as an anode material for lithium ion batteries. Electrochim Acta 55:521–527. doi: 10.1016/j.electacta.2009.09.009

    Article  CAS  Google Scholar 

  • Yao Y, Xu F, Chen M, Xu Z, Zhu Z (2010) Adsorption behavior of methylene blue on carbon nanotubes. Bioresour Technol 101:3040–3046. doi: 10.1016/j.biortech.2009.12.042

    Article  CAS  Google Scholar 

  • Ye Y, Ahn CC, Witham C, Fultz B, Liu J, Rinzler AG, Colbert D, Smith KA, Smalley RE (1999) Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl Phys Lett 74:2307–2309. doi: 10.1063/1.123833

    Article  CAS  Google Scholar 

  • Yeh JT, Yang MC, Wu CJ, Wu CS (2009) Preparation and characterization of biodegradable polycaprolactone/ multiwalled carbon nanotubes nanocomposites. J Appl Polym Sci 112:660–668. doi: 10.1002/app. 29485

    Article  CAS  Google Scholar 

  • Yildirim T, Ciraci S (2005) Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium. Phys Rev Lett 94:175501. doi: 10.1103/PhysRevLett.94.175501

    Article  CAS  Google Scholar 

  • Yilmaz DD (2007) Effects of salinity on growth and nickel accumulation capacity of Lemna gibba (Lemnaceae). J Hazard Mater 147:74–77. doi: 10.1016/j.jhazmat.2006.12.047

    Article  CAS  Google Scholar 

  • Yu G, Li X, Lieber CM, Cao A (2008) Nanomaterial-incorporated blown bubble films for large-area, aligned nanostructures. J Mater Chem 18:728–734. doi: 10.1039/b713697h

    Article  CAS  Google Scholar 

  • Yürüm Y, Taralp A, Veziroglu TN (2009) Storage of hydrogen in nanostructured carbon materials. Int J Hydrog Energy 34:3784–3798. doi: 10.1016/j.ijhydene.2009.03.001

    Article  CAS  Google Scholar 

  • Zhang WD, Zhang WH (2009) Carbon nanotubes as active components for gas sensors. J Sensors 2009:160698. doi: 10.1155/2009/160698

    Google Scholar 

  • Zhang Y, Sun X, Pan L, Li H, Sun Z, Sun C, Tay BK (2009) Carbon nanotube-ZnO nanocomposite electrodes for supercapacitors. Solid State Ion 180:1525–1528. doi: 10.1016/j.ssi.2009.10.001

    Article  CAS  Google Scholar 

  • Zheng S-F, Hu J-S, Zhong L-S, Song W-G, Wan L-J, Guo Y-G (2008) Introducing dual functional CNT networks into CuO nanomicrospheres toward superior electrode materials for lithium-ion batteries. Chem Mater 20:3617–3622. doi: 10.1021/cm7033855

    Article  CAS  Google Scholar 

  • Zhou Y, Hu L, Grüner G (2006) A method of printing carbon nanotube thin films. Appl Phys Lett 88:123109–123111. doi: 10.1063/1.2187945

    Article  CAS  Google Scholar 

  • Zhou Y, Gao Y, Liu Y, Liu J (2010) High efficiency Pt-CeO2/carbon nanotubes hybrid composite as an anode electrocatalyst for direct methanol fuel cells. J Power Source 195:1605–1609. doi: 10.1016/j.jpowsour.2009.08.106

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial supports from Fundamental Research Grant Scheme (FRGS), USM Short Term Grant, Kuok Foundation Postgraduate Scholarship and USM Fellowship are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon Huat Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tan, C.W., Tan, K.H., Ong, Y.T., Mohamed, A.R., Zein, S.H.S., Tan, S.H. (2012). Carbon Nanotubes Applications: Solar and Fuel Cells, Hydrogen Storage, Lithium Batteries, Supercapacitors, Nanocomposites, Gas, Pathogens, Dyes, Heavy Metals and Pesticides. In: Lichtfouse, E., Schwarzbauer, J., Robert, D. (eds) Environmental Chemistry for a Sustainable World. Environmental Chemistry for a Sustainable World. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2442-6_1

Download citation

Publish with us

Policies and ethics