Skip to main content

Fe–Mn Concretions and Nodules to Sequester Heavy Metals in Soils

  • Chapter
  • First Online:

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW))

Abstract

Over the last two decades, considerable attention has been paid to the management of metal-contaminated soils. Fe-Mn concretions and nodules can be used to sequester metals by adsorption. Fe-Mn concretions and nodules are discrete bodies with variable compositions formed in the soil system under alternating oxidizing and reducing conditions. This chapter highlights the high adsorption capacity of soil Fe-Mn concretions and nodules for many metal contaminants. The geochemical association of various metals with either Mn or Fe rich phase in Fe-Mn concretions and nodules are a primary environmental procedure that controls the dynamics of these contaminants in the soil system. The formation of Fe-Mn concretions and nodules is the most efficient and durable process for metal contaminants sequestration in the soils. Since the formation of soil concretions has a potentially beneficial effect on metals availability, the application of these environmental materials as geochemical reactors to improve the efficiency of in situ technologies for remediating metal contaminated soils is strongly recommended.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adriano DC (2001) Trace elements in terrestrial environments: biochemistry, bioavailability and risks of metals, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Aide M (2005) Elemental composition of soil nodules from two alfisols on an alluvial terrace in Missouri. Soil Sci 170:1022–1033. doi:10.1097/01.ss.0000187351.16740.55

    Article  CAS  Google Scholar 

  • Alloway BJ (1995) Heavy metals in soils, 2nd edn. Blackie/Academic and Professional, London/Glasgow/Weinhein/New York/Tokyo/Melbourne

    Book  Google Scholar 

  • Banerjee R, Roy S, Dasgupta S, Mukhopadhyay S, Miura H (1999) Petrogenesis of ferromanganese nodules from east of the Chagos Archipelago, Central Indian Basin, Indian Ocean. Mar Geol 157:145–158. doi:10.1016/S0025-3227(98)00156-X

    Article  CAS  Google Scholar 

  • Belzile N, Chen YW, Grenier M (2001) Freshwater metallic concretions from an acidic lake characterized by X-ray energy dispersive spectrometry. Can J Anal Sci Spectrom 46:145–151

    CAS  Google Scholar 

  • Borch T, Kretzschmar R, Kappler A, Van Cappellen P, Ginder-Vogel M, Voegelin A, Campbell K (2010) Biogeochemical redox processes and their impact on contaminant dynamics. Environ Sci Technol 44:15–23. doi:10.1021/es9026248

    Article  CAS  Google Scholar 

  • Brewer R (1964) Fabric and mineral analysis of soils. Wiley, New York

    Google Scholar 

  • Brümmer GW, Gerth J, Herms U (1986) Heavy metal species, mobility and availability in soils. Z Pflanzenernähr Bodenkd 149:382–398

    Article  Google Scholar 

  • Burns RG (1976) The uptake of cobalt into ferromanganese nodules, soil, and synthetic manganese (IV) oxides. Geochim Cosmochim Acta 40:95–102. doi:10.1016/0016-7037(76)90197-6

    Article  CAS  Google Scholar 

  • Businelli M, Casciari F, Businelli D, Gigliotti G (2003) Mechanisms of Pb (II) sorption and desorption at some clays and goethite-water interfaces. Agronomie 23:219–225. doi:10.1051/agro:2002085

    Article  Google Scholar 

  • Cescas MP, Tyner EH, Harmer RS (1970) Ferromanganiferous soil concretions: a scanning electron microscope study of their microscope structures. Soil Sci Soc Am Proc 34:641–644

    Article  Google Scholar 

  • Chauhan OS, Gujar AR, Rao ChM (1994) On the occurrence of ferromanganese micronodules from the sediments of the Bengal fan: a high terrigenous sediment input region. Earth Planet Sci Lett 128:563–573

    Article  CAS  Google Scholar 

  • Chen ZS, Lee GJ, Liu JC (2000) The effects of chemical remediation treatments on the extractability and speciation of cadmium and lead in contaminated soils. Chemosphere 41:235–242. doi:10.1016/S0045-6535(99)00416-6

    Article  CAS  Google Scholar 

  • Chen Z, Kim KW, Zhu YG, McLaren R, Liu F, He JZ (2006) Adsorption (As III, V) and oxidation (As III) of arsenic by pedogenic Fe-Mn nodules. Geoderma 136:566–572. doi:10.1016/j.geoderma.2006.04.012

    Article  CAS  Google Scholar 

  • Childs CW (1975) Composition of iron-manganese concretions from some New Zealand soils. Geoderma 13:141–152. doi:10.1016/0016-7061(75)90063-4

    Article  CAS  Google Scholar 

  • Childs CW, Leslie DM (1977) Interelement relationships in iron-manganese concretions from a catenary sequence of yellow-grey earth soils in loess. Soil Sci 123:369–376. doi:10.1097/00010694-197706000-00005

    Article  CAS  Google Scholar 

  • Clausnitzer D, Huddleston JH, Horn E, Keller M, Leet C (2003) Hydric soils in a Southeastern vernal pool. Soil Sci Soc Am J 67:951–960

    Article  CAS  Google Scholar 

  • Contin M, Mondini C, Leita L, De Nobili M (2007) Enhanced soil toxic metal fixation in iron (hydr)oxides by redox cycles. Geoderma 140:164–175. doi:10.1016/j.geoderma.2007.03.017

    Article  CAS  Google Scholar 

  • Contin M, Mondini C, Leita L, Zaccheo P, Crippa L, De Nobili M (2008) Immobilisation of soil toxic metals by repeated additions of Fe(II) sulphate solution. Geoderma 147:133–140. doi:10.1016/j.geoderma.2008.08.006

    Article  CAS  Google Scholar 

  • Cornell RM, Schwertmann U (1996) The iron oxides. VCH Publishers, Weinheim

    Google Scholar 

  • Cornu S, Deschatrettes V, Salvador-Blanes S, Clozel B, Hardy M, Branchut S, LeForestier L (2005) Trace element accumulation in Mn-Fe-oxide nodules of a planosolic horizon. Geoderma 125:11–24. doi:10.1016/j.geoderma.2004.06.009

    Article  CAS  Google Scholar 

  • Cornu S, Cattle JA, Samouëlian A, Laveuf C, Guilherme LRG, Albéric P (2009) Impact of redox cycles on manganese, iron, cobalt, and lead in nodules. Soil Sci Soc Am J 73:1231–1241. doi:10.2136/sssaj2008.0024

    Article  CAS  Google Scholar 

  • D’Amore DV, Stewart SR, Huddleston JH (2004) Saturation, reduction and the formation of iron-manganese concretions in the Jackson-Frazier wetland, Oregon. Soil Sci Soc Am J 68:1012–1022

    Article  Google Scholar 

  • D’Amore JJ, Al-Abed SR, Scheckel KG, Ryan JA (2005) Methods for speciation of metals in soils. J Environ Qual 34:1707–1745. doi:10.2134/jeq2004.0014

    Article  CAS  Google Scholar 

  • Davranche M, Bollinger JC (2000) Release of metals from iron oxyhydroxides under reductive conditions: effect of metal/solid interactions. J Colloid Interface Sci 232:165–173. doi:10.1006/jcis.2000.7177

    Article  CAS  Google Scholar 

  • Dawson BSW, Ferguson JE, Campbell AS, Cutler EJB (1985) Distribution of elements in some Fe-Mn nodules and an iron-pan in some gley soils of New Zealand. Geoderma 35:127–143. doi:10.1016/0016-7061(85)90026-6

    Article  CAS  Google Scholar 

  • Dixon JB, White GN (2002) Manganese oxides. In: Dixon JB, Schulze DG (eds) Soil mineralogy with environmental applications, SSSA book series 7. Soil Science Society of America, Madison, pp 367–388

    Google Scholar 

  • Drosdoff M, Nikiforoff CC (1940) Iron – manganese concretions in Dayton soils. Soil Sci 49:333–345. doi:10.1097/00010694-194005000-00001

    Article  CAS  Google Scholar 

  • Dutta RK, Sideras-Haddad E, Connell SH (2001) Distribution of various components in a hydrogeneous ferromanganese nodule and an Afanasity Nikitin Seamount crust from Indian Ocean – a geochemical study using micro-PIXE. Nucl Instrum Methods B 181:545–550

    Article  CAS  Google Scholar 

  • Essington M (2004) Soil and water chemistry – an integrative approach. CRC Press, Boca Raton

    Google Scholar 

  • Fendorf SE (1995) Surface reactions of chromium in soils and waters. Geoderma 67:55–71

    Article  CAS  Google Scholar 

  • Fiedler S, Vepraskas MJ, Richardson JL (2007) Soil redox potential: importance, field measurements and observations. Adv Agron 94:1–54. doi:10.1016/S0065-2113(06)94001-2

    Article  CAS  Google Scholar 

  • Gaiffe M, Kubler B (1992) Relationships between mineral composition and relative ages of iron nodules in Jurassian soil sequences. Geoderma 52:343–350. doi:10.1016/0016-7061(92)90045-9

    Article  CAS  Google Scholar 

  • Gasparatos D (2007) Genesis of Fe – Mn concretions and nodules in alfisols of thessaly. PhD thesis, Agricultural University of Athens, Athens, Greece, 275 p

    Google Scholar 

  • Gasparatos D, Haidouti C, Tarenidis D (2004a) Characterization of iron oxides in Fe-rich concretions from an imperfectly drained Greek soil: a study by selective-dissolution techniques and X-ray diffraction. Arch Agron Soil Sci 50:485–493. doi:10.1080/0365034042000216149

    Article  CAS  Google Scholar 

  • Gasparatos D, Haidouti C, Tarenidis D, Tsagalidis A (2004b) Enrichment factors of heavy metals in iron – manganese concretions from imperfectly drained soils. Bull Geol Soc Greece, vol XXXVI. In: Proceedings of the 10th international congress, Thessaloniki, April 2004, pp 158–163

    Google Scholar 

  • Gasparatos D, Haidouti C, Adrinopoulos F, Areta O (2005a) Chemical speciation and bioavailability of Cu, Zn and Pb in soils from the National Garden of Athens, Greece. In: Proceedings of the 9th international conference on environmental science and technology, Rhodes island, 1–3 Sep 2005, vol A, pp 438–444

    Google Scholar 

  • Gasparatos D, Tarenidis D, Haidouti C, Oikonomou G (2005b) Microscopic structure of soil Fe-Mn nodules: environmental implications. Environ Chem Lett 2:175–178. doi:10.1007/s10311-004-0092-5

    Article  CAS  Google Scholar 

  • Gasparatos D, Haidouti C, Haroulis A, Tsaousidou P (2006) Estimation of phosphorus status of soil Fe-enriched concretions with the acid ammonium oxalate method. Commun Soil Sci Plan 37:2375–2387. doi:10.1080/00103620600819891

    Article  CAS  Google Scholar 

  • Halbach P (1976) Mineralogical and geochemical investigations of Finnish lakes ore. Bull Geol Soc Finland 48:33–42

    Article  Google Scholar 

  • Hettiarachchi GM, Pierzynski GM (2002) In situ stabilization of soil lead using phosphorus and manganese oxide: influence of plant growth. J Environ Qual 31:564–572

    Article  CAS  Google Scholar 

  • Hettiarachchi GM, Pierzynski GM, Ransom MD (2000) In situ stabilization of soil lead using phosphorus and manganese oxide. Environ Sci Technol 34:4614–4619

    Article  CAS  Google Scholar 

  • Hickey PJ, McDaniel PA, Strawn DG (2008) Characterization of iron – manganese cemented redoximorphic aggregates on Wetland soils contaminated with mine wastes. J Environ Qual 37:2375–2385. doi:10.2134/jeq2007.0488

    Article  CAS  Google Scholar 

  • Huang L, Hong J, Tan W, Hu H, Liu F, Wang M (2008) Characteristics of micromorphology and element distribution of iron – manganese cutans in typical soils of subtropical China. Geoderma 146:40–47. doi:10.1016/j.geoderma.2008.05.007

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Kanev VV, Kazakov VG (1999) Nodules as a reservoir of mobile elements in podzolic soils. Eurasian Soil Sci 32:308–317

    Google Scholar 

  • King HB, Torrance JK, Bowen LH, Wang C (1990) Iron concretions in a typic dystrochrept in Taiwan. Soil Sci Soc Am J 54:462–468

    Article  CAS  Google Scholar 

  • Knox AS, Seaman JC, Mench MJ, Vangronsveld J (2001) Remediation of metal-and radionuclides-contaminated soils by in situ stabilization techniques. In: Iskandar IK (ed) Environmental restoration of metals-contaminated soils. CRC Press LLC, Boca Raton, pp 21–60

    Google Scholar 

  • Kögel-Knabner I, Amelung W, Cao Z, Fiedler S, Frenzel P, Jahn R, Kalbitz K, Kölbl A, Schloter M (2010) Biogeochemistry of paddy soils. Geoderma 157:1–14. doi:10.1016/j.geoderma.2010.03.009

    Article  CAS  Google Scholar 

  • Koschinsky A, Halbach P (1995) Sequential leaching of marine ferromanganese precipitates. Geochim Cosmochim Acta 59:5113–5132. doi:10.1016/0016-7037(95)00358-4

    Article  CAS  Google Scholar 

  • LaForce MJ, Fendorf SE, Li GC, Rosenzweig RF (1999) Redistribution of trace elements from contaminated sediments of Lake Coeur d’ Alene during oxygenation. J Environ Qual 28:1195–1200

    Article  CAS  Google Scholar 

  • Latrille C, Elsass F, vanOort F, Denaix L (2001) Physical speciation of trace metals in Fe-Mn concretions from a rendzic lithosol developed on Sinemurian limestones (France). Geoderma 100:127–146. doi:10.1016/S0016-7061(00)00083-5

    Article  CAS  Google Scholar 

  • Li YH (1982) Interelement relationship in abyssal Pacific ferromanganese nodules and associated pelagic sediments. Geochim Cosmochim Acta 46:1053–1060. doi:10.1016/0016-7037(82)90058-8

    Article  CAS  Google Scholar 

  • Lin H, Bouma J, Wilding LP, Richardson JL, Kutilek M, Nielsen R (2005) Advances in hydropedology. Adv Agron 85:1–89. doi:10.1016/S0065-2113(04)85001-6

    Article  Google Scholar 

  • Lindbo DL, Rhoton FE, Hundnall WH, Smeck NE, Bigham JM, Tyler DD (2000) Fragipan degradation and nodule formation in Glossic Fragiudalfs of the Lower Mississippi River Valley. Soil Sci Soc Am J 64:1713–1722

    Article  CAS  Google Scholar 

  • Liu F, Colombo C, Adamo P, He JZ, Violante A (2002) Trace elements in manganese-iron nodules from a Chinese alfisol. Soil Sci Soc Am J 66:661–670

    Article  CAS  Google Scholar 

  • Lombi E, Zhao FJ, Zhang G, Sun B, Fitz W, Zhang H, McGrath SP (2002) In situ fixation of metals in soils using bauxite residue: chemical assessment. Environ Pollut 118:435–443. doi:10.1016/S0269-7491(01)00294-9

    Article  CAS  Google Scholar 

  • Lombi E, Hamon RE, Wieshammer G, McLaughlin MJ, McGrath SP (2004) Assessment of the use of industrial by-products to remediate a copper and arsenic-contaminated soil. J Environ Qual 33:902–910

    Article  CAS  Google Scholar 

  • Manceau A, Drits VA, Silvester E, Bartoli C, Lanson B (1997) Structural mechanisms of Co2+ oxidation by the phyllomanganate buserite. Am Miner 82:1150–1175

    Article  CAS  Google Scholar 

  • Manceau A, Tamura N, Celestre RS, Marcus MA, MacDowell AA, Celestre RS, Sublett RE, Sposito G, Padmore HA (2002) Deciphering Ni sequestration in soil ferromanganese nodules by combining X-ray fluorescence, absorption, and diffraction at micrometer scale of resolution. Am Miner 87:1494–1499

    Article  CAS  Google Scholar 

  • Manceau A, Tamura N, Celestre RS, MacDowell AA, Geoffroy N, Sposito G, Padmore HA (2003) Molecular-scale speciation of Zn and Ni in soil ferromanganese nodules from loess soils of the Mississippi basin. Environ Sci Technol 37:75–80. doi:10.1021/es025748r

    Article  CAS  Google Scholar 

  • Manceau A, Lanson M, Geoffroy N (2007) Natural speciation of Ni, Zn Ba and As in ferromanganese coatings on quartz using X-ray fluorescence, absorption, and diffraction. Geochim Cosmochim Acta 71:95–128. doi:10.1016/j.gca.2006.08.036

    Article  CAS  Google Scholar 

  • Manning BA, Fendorf S, Bostick B, Suarez DL (2002) Arsenic (III) oxidation and arsenic (V) adsorption reactions on synthetic birnessite. Environ Sci Technol 36:976–981

    Article  CAS  Google Scholar 

  • Marcus MA, Manceau A, Kersten M (2004) Mn, Fe, Zn and As speciation in a fast-growing ferromanganese marine nodule. Geochim Cosmochim Acta 68:3125–3136. doi:10.1016/j.gca.2004.01.015

    Article  CAS  Google Scholar 

  • Matchavariani LG (2005) Morphogenetic typification of concretions in subtropical podzolic soils of Georgia. Eurasian Soil Sci 38:1161–1172

    Google Scholar 

  • McBride MB (1994) Environmental chemistry of soils. Oxford University Press, New York

    Google Scholar 

  • McGrath SP (1995) Chromium and nickel. In: Alloway BJ (ed) Heavy metals in soils, 2nd edn. Blackie/Academic and Professional, London, pp 152–174

    Chapter  Google Scholar 

  • McKenzie RM (1975) An electron microprobe study of the relationships between heavy metals and manganese and iron in soils and ocean floor nodules. Aust J Soil Res 13:177–188. doi:10.1071/SR9750177

    Article  CAS  Google Scholar 

  • McKenzie RM (1980) The adsorption of lead and other heavy metals on oxides of manganese and iron. Aust J Soil Res 18:61–73. doi:10.1071/SR9800061

    Article  CAS  Google Scholar 

  • McKenzie RM (1989) Manganese oxides and hydroxides. In: Dixon JB, Weed SB (eds) Minerals in soil environments, 2nd edn, SSSA Book Series. 1. SSSA, Madison, pp 439–465

    Google Scholar 

  • Mench MJ, Didier VL, Loffler M, Gomez A, Masson P (1994) A mimicked in-situ remediation study of metal-contaminated soils with emphasis on cadmium and lead. J Environ Qual 23:58–63

    Article  CAS  Google Scholar 

  • Neaman A, Mouélé F, Trolard F, Bourrié G (2004) Improved methods for selective dissolution of Mn oxides: applications for studying trace element associations. Appl Geochem 19:973–979. doi:10.1016/j.apgeochem.2003.12.002

    Article  CAS  Google Scholar 

  • Neaman A, Martinez CE, Trolard F, Bourrie G (2008) Trace elements associations with Fe-Mn oxides in soil nodules: comparison of selective dissolution with electron probe microanalysis. Appl Geochem 23:778–782. doi:10.1016/j.apgeochem.2007.12.025

    Article  CAS  Google Scholar 

  • Negra C, Ross DS, Lanzirotti A (2005) Oxidizing behavior of soil manganese: interactions among abundance, oxidation state and pH. Soil Sci Soc Am J 69:87–95

    Article  CAS  Google Scholar 

  • Nirel PV, Morel FM (1990) Pitfalls of sequential extractions. Water Res 24:1055–1056

    Article  CAS  Google Scholar 

  • Ojanuga AG, Lee GB (1973) Characteristics, distribution, and genesis of nodules and concretions in soils of the southwestern upland of Nigeria. Soil Sci 116:282–291

    Article  Google Scholar 

  • Pai CW, Wang MK, Zhuang SY, King HB, Hwong J-L, Hu HT (2003a) Characterisation of iron nodules in a Ultisol of Central Taiwan. Aust J Soil Res 41:37–46. doi:10.1071/SR02034

    Article  CAS  Google Scholar 

  • Pai CW, Wang MK, Chiang HC, King HB, Hwong J-L, Hu HT (2003b) Formation of iron nodules in a Hapludult of central Taiwan. Can J Soil Sci 83:167–172

    Article  CAS  Google Scholar 

  • Palumbo B, Bellanca A, Neri R, Roe MJ (2001) Trace metal partitioning in Fe-Mn nodules from Sicilian soils. Italy Chem Geol 173:257–269. doi:10.1016/S0009-2541(00)00284-9

    Article  CAS  Google Scholar 

  • Pawluk S, Dumanski J (1973) Ferruginous concretions in a poorly drained soil of Alberta. Soil Sci Soc Am Proc 37:124–127

    Article  CAS  Google Scholar 

  • Phillippe WR, Blevins RL, Barnhisel RI, Bailey HH (1972) Distribution of concretions from selected soils of the inner bluegrass region of Kentucky. Soil Sci Soc Am Proc 36:171–173

    Article  CAS  Google Scholar 

  • Pickering WF (1986) Metal ion speciation—soils and sediments (a review). Ore Geol Rev 1:83–146

    Article  CAS  Google Scholar 

  • Post JE (1999) Manganese oxide minerals: crystal structures and economic and environmental significance. Proc Natl Acad Sci 96:3447–3454. doi:10.1073/pnas.96.7.3447

    Article  CAS  Google Scholar 

  • Puschenreiter M, Horak O, Friesl W, Hartl W (2005) Low-cost agricultural measures to reduce heavy metal transfer into the food chain – a review. Plant Soil Environ 51:1–11

    Article  Google Scholar 

  • Rabenhorst MC, Parikh S (2000) Propensity of soils to develop redoximorphic color changes. Soil Sci Soc Am J 64:1904–1910

    Article  CAS  Google Scholar 

  • Ram H, Singh RP, Prasad J (2001) Chemical and mineralogical composition of Fe-Mn concretions and calcretes occurring in sodic soils of Eastern Uttar Pradesh. India Aust J Soil Res 39:641–648. doi:10.1071/SR98098

    Article  CAS  Google Scholar 

  • Reddy KR, Delaune R (2008) Biogeochemistry of wetlands: science and applications. CRC Press/Taylor & Francis Group, Boca Raton

    Book  Google Scholar 

  • Rhoton FE, Meyer LD, Mcchesney DS (1991) Depth-of-erosion assessment using iron-manganese nodule concentrations in surface horizons. Soil Sci 152:389–394

    Article  CAS  Google Scholar 

  • Rhoton FE, Bigham JM, Schulze DG (1993) Properties of iron-manganese nodules from a sequence of eroded fragipan soils. Soil Sci Soc Am J 57:1386–1392

    Article  CAS  Google Scholar 

  • Ross SJ, Franzmeer DP, Roth CB (1976) Mineralogy and chemistry of manganese oxides in some Indiana soils. Soil Sci Soc Am J 40:137–143

    Article  CAS  Google Scholar 

  • Sanz A, Garcia-Gonzalez MT, Vizcayno C, Rodriguez R (1996) Iron-manganese nodules in a semi-arid environment. Aust J Soil Res 34:623–634. doi:10.1071/SR9960623

    Article  CAS  Google Scholar 

  • Sauvé S, Martinez CE, McBride M, Hendershot W (2000) Adsorption of free lead (Pb2+) by pedogenic oxides, ferrihydrite and leaf compost. Soil Sci Soc Am J 64:595–599

    Article  Google Scholar 

  • Scheinost AC, Abend S, Pandya KI, Sparks DL (2001) Kinetic control of Cu and Pb sorption by ferrihydrite. Environ Sci Technol 35:1090–1096

    Article  CAS  Google Scholar 

  • Schwertmann U, Fanning DS (1976) Iron-manganese concretions in hydrosequences of soils in loess in Bavaria. Soil Sci Soc Am J 40:731–738

    Article  CAS  Google Scholar 

  • Schwertmann U, Taylor RM (1989) Iron oxides. In: Dixon JB, Weed SB (eds) Minerals in soil environments, 2nd edn. SSSA, Madison, pp 380–438

    Google Scholar 

  • Schwertmann U, Carlson L, Murad E (1987) Properties of iron oxides in two Finnish lakes in relation to the environment of their formation. Clay Clay Miner 35:297–304. doi:10.1346/CCMN.1987.0350407

    Article  CAS  Google Scholar 

  • Sen TK, Mahajan SP, Khilar KC (2002) Adsorption of Cu2+ and Ni2+ on iron oxide and kaolin and its importance on Ni2+ transport in porous media. Colloids Surf A Physicochem Eng Aspects 211:91–102

    Article  CAS  Google Scholar 

  • Sidhu PS, Sehagal JL, Sinha MK, Randhawa NS (1977) Composition and mineralogy of iron-manganese concretions from some soils of the Indo-Gangetic Plain in northhwest India. Geoderma 18:241–249. doi:10.1016/0016-7061(77)90034-9

    Article  CAS  Google Scholar 

  • Singh B, Gilkes RJ (1996) Nature and properties of iron rich glaebules and mottles from south-west Australian soils. Geoderma 71:95–120. doi:10.1016/0016-7061(95)00092-5

    Article  CAS  Google Scholar 

  • Sposito G, Reginato RJ (1992) Opportunities in basic soil science research. Soil Science Society of America, Madison, p 107

    Google Scholar 

  • Stipp SLS, Hansen M, Kristensen R, Hochella MF Jr, Bennedsen L, Dideriksen K, Balic-Zunic T, Leonard D, Mathieu H-J (2002) Behaviour of Fe-oxides relevant to contaminant uptake in the environment. Chem Geol 190:321–337. doi:10.1016/S0009-2541(02)00123-7

    Article  CAS  Google Scholar 

  • Suarez DL, Langmuir D (1976) Heavy metal in a Pennsylvania soil. Geochim Cosmochim Acta 40:589–598. doi:10.1016/0016-7037(76)90105-8

    Article  CAS  Google Scholar 

  • Sullivan LA, Koppi AJ (1992) Manganese oxide accumulations associated with some soil structural pores. I. Morphology, composition and genesis. Aust J Soil Res 30:409–427. doi:10.1071/SR9920409

    Article  CAS  Google Scholar 

  • Sun X, Doner HE, Zavarin M (1999) Spectroscopy study of arsenite [AsIII] oxidation on Mn-substituted goethite. Clays Clay Miner 47:474–480

    Article  CAS  Google Scholar 

  • Szulczewski M, Helmke PA, Bleam WF (1997) Comparison of XANES analyses and extractions to determine chromium speciation in contaminated soils. Environ Sci Technol 31:2954–2959

    Article  CAS  Google Scholar 

  • Tan WF, Liu F, Li YH, Hu YO, Huang QY (2006) Elemental composition and geochemical characteristics of iron-manganese nodules in main soils of China. Pedosphere 16:72–81. doi:10.1016/S1002-0160(06)60028-3

    Article  CAS  Google Scholar 

  • Thompson A, Chadwick OA, Rancourt DG, Chorover J (2006) Iron-oxide crystallinity increases during soil redox oscillations. Geochim Cosmochim Acta 70:1710–1727. doi:10.1016/j.gca.2005.12.005

    Article  CAS  Google Scholar 

  • Timofeeva YO, Golov VI (2007) Sorption of heavy metals by iron – manganic nodules in soils of Primorskii Gregion. Eurasian Soil Sci 40:1308–1315. doi:10.1134/S1064229307120071

    Article  Google Scholar 

  • Tokashiki Y, Dixon JB, Golden DC (1986) Manganese oxide analysis in soils by combined X-ray diffraction and selective dissolution methods. Soil Sci Soc Am J 50:1079–1084

    Article  CAS  Google Scholar 

  • Tokashiki Y, Hentona T, Shimo M, Vidhana Arachchi LP (2003) Improvement of the successive selective dissolution procedure for the separation of birnessite, lithiophorite and goethite in soil manganese nodules. Soil Sci Soc Am J 67:837–843

    Article  CAS  Google Scholar 

  • Trolard F, Bourrie G (2008) Geochemistry of green rusts and fougerite: a reevaluation of Fe cycles in soils. Adv Agron 99:227–288. doi:10.1016/S0065-2113(08)00405-7

    Article  CAS  Google Scholar 

  • Tzou YM, Wang MK, Loeppert RH (2003) Sorption of phosphate and Cr (VI) by Fe (III) and Cr (III) hydroxides. Arch Environ Contam Toxicol 44:445–453. doi:10.1007/s00244-002-2090-6

    Article  CAS  Google Scholar 

  • Ure AM, Davidson CM (2002) Chemical speciation in soils and related materials by selective chemical extraction. In: Ure AM, Davidson CM (eds) Chemical speciation in the environment, 2nd edn. Blackwell Science Ltd, New York, pp 265–298

    Chapter  Google Scholar 

  • Vepraskas MJ (1999) Redoximorphic features for identifying aquic conditions. North Carolina Agric Res Serv Tech Bull 301. North Carolina State University, Raleigh

    Google Scholar 

  • Vepraskas MJ (2001) Morphological features of seasonally reduced soils. In: Richardson JL, Vepraskas MJ (eds) Wetland soils: genesis, hydrology, landscapes and classification. Lewis Publishers, Boca Raton, pp 163–182

    Google Scholar 

  • Vidhana Arachchi LP, Tokashiki Y, Baba S (2004) Mineralogical characteristics and micromorphological observations of brittle/soft Fe/Mn concretions from Okinawan soils. Clay Clay Miner 52:462–472. doi:10.1346/CCMN.2004.0520407

    Article  CAS  Google Scholar 

  • Vodyanitskii YN (2006) The composition of Fe-Mn nodules as determined by synchrotron X-ray analysis (review of publications). Eurasian Soil Sci 39:147–156

    Article  Google Scholar 

  • Vodyanitskii YN, Vasilev AA, Lesovaya SN, Sataev EF, Sivtsov AV (2004) Formation of manganese oxides in soils. Eurasian Soil Sci 37:663–675

    Google Scholar 

  • Vodyanitskii YN, Vasilev AA, Vlasov MN, Korovushkin AV (2009) The role of iron compounds in fixing heavy metals and arsenic in alluvial and soddy-podzolic soils in the Perm area Eurasian. Soil Sci 42:738–749. doi:10.1134/S1064229309070047

    Google Scholar 

  • Wheeting LC (1936) Shot soils of western Washington State. Soil Sci 41:35–45

    Article  CAS  Google Scholar 

  • White GN, Dixon JB (1996) Iron and manganese distribution in nodules from a Young Texas Vertisol. Soil Sci Soc Am J 60:1254–1262

    Article  CAS  Google Scholar 

  • Winters E (1938) Ferromanganiferous concretions from podzolic soils. Soil Sci 46:35–45. doi:10.1097/00010694-193807000-00005

    Article  Google Scholar 

  • Zaidelman FR, Nikiforova AS (1997) On some general regularities of the formation and changes in properties of Mn-Fe concretions in soils of humid landscapes. Arch Agron Soil Sci 41:367–382. doi:10.1080/03650349709366007

    Article  CAS  Google Scholar 

  • Zaidelman FR, Nikiforova AS (1998) Manganese-iron concretions in soils and their change under the effect if gleyification on parent materials of different genesis. Eurasian Soil Sci 31:817–825

    Google Scholar 

  • Zaidelman FR, Nikiforova AS, Stepantsova LV, Safronov SB, Krasin VN (2009) Manganese, iron, and phosphorus in nodules of Chernozem-like soils on the Northern Tambov Plain and their importance for the diagnostics of gley intensity. Eurasian Soil Sci 42:477–487

    Article  Google Scholar 

  • Zhang M, Karathanasis AD (1997) Characterization of iron-manganese concretions in Kentuky alfisols with perched water tables. Clay Clay Miner 45:428–439. doi:10.1346/CCMN.1997.0450312

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank two anonymous reviewers for their helpful comments that significantly improved the manuscript as well as Ms K. Kokkinou for her valuable assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dionisios Gasparatos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gasparatos, D. (2012). Fe–Mn Concretions and Nodules to Sequester Heavy Metals in Soils. In: Lichtfouse, E., Schwarzbauer, J., Robert, D. (eds) Environmental Chemistry for a Sustainable World. Environmental Chemistry for a Sustainable World. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2439-6_11

Download citation

Publish with us

Policies and ethics