Skip to main content

Heavy Metals: Toxicity and Removal by Biosorption

  • Chapter
  • First Online:
Environmental Chemistry for a Sustainable World

Abstract

Industrialization, urbanization and various anthropogenic activities such as mining and agriculture have increased releases of toxic heavy metals into the natural environment such as soils, lakes, rivers, groundwaters and oceans. The release of heavy metals in biologically available forms alter both natural and man–made ecosystems. Although some heavy metal ions are essential micronutrients for plant metabolism, they become highly toxic when they occur at high concentrations in soils, groundwaters and waste streams. Moreover, heavy metals are not biodegradable and persist in the environment. Conventional methods for the removal of the heavy metals ions from contaminated wasters and wastewaters include chemical precipitation, electroflotation, ion exchange, reverse osmosis and adsorption onto activated carbon. Recently, pioneering research on biosorption of heavy metals has led to the identification of microbes that are extremely effective in bioconcentrating metals. Biosorption is the binding and concentration of an element from aqueous solutions by organic materials such as microbial biomass. The major advantages of biosorption over conventional treatment methods include low cost, high efficiency, minimization of chemical or biological sludge, regeneration of biosorbents and possible metal recovery. Due to their humic acid content, vermicomposts are a novel and effective variety of biosorbent for removing metallic ions such as Pb, Ni, Cr, Cd and V from wastewaters. The types of biosorbents surveyed in this chapter are fungal biomass, biomass of nonliving, dried brown marine algae, agricultural wastes and residues, composite chitosan biosorbent prepared by coating chitosan, cellulose based sorbents, and bacterial strains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas M, Nadeem R, Zafar MN, Arshad M (2008) Biosorption of chromium (III) and chromium (VI) by untreated and pretreated Cassia fistula biomass from aqueous solutions. Water Air Soil Pollut 191:139–148. doi:10.1007/s11270-007-9613-8

    Article  CAS  Google Scholar 

  • Abollino O, Aceto M, Malandrino M, Sarzanini C, Mentasti E (2003) Adsorption of heavy metals on Na–montmorillonite. Effect of pH and organic substances. Water Res 37:1619–1627. doi:10.1016/S0043-1354(02)00524-9

    Article  CAS  Google Scholar 

  • Aboulroos SA, Helal MID, Kamel MM (2006) Remediation of Pb and Cd polluted soils using in situ immobilization and phytoextraction techniques. Soil Sediment Contam 15:199–215. doi:10.1080/15320380500506362

    Article  CAS  Google Scholar 

  • Abu Al–Rub FA, El–Naas MH, Ashour I, Al–Marzouqi M (2006) Biosorption of copper on Chlorella vulgaris from single, binary and ternary metal aqueous solutions. Process Biochem 41:457–464. doi:10.1016/j.procbio.2005.07.018

    Article  CAS  Google Scholar 

  • Acar FN, Malkoc E (2004) The removal of chromium(VI) from aqueous solutions by Fagus orientalis L. Bioresour Technol 94:3–15. doi:10.1016/j.biortech.2003.10.032

    Article  CAS  Google Scholar 

  • Adesola Babarinde NA, Oyebamiji Babalola J, Adetunji AA (2008) Isotherm and thermodynamic studies of the biosorption of zinc(II) from solution by maize leaf. Pac J Sci Technol 9:196–202

    Google Scholar 

  • Adriano DC (2001) Trace elements in terrestrial environments; biochemistry, bioavailability and risks of metals. Springer–Verlag, New York

    Book  Google Scholar 

  • Akar T, Kaynak Z, Ulusoy S, Yuvaci D, Ozsari G, Akar ST (2009) Enhanced biosorption of nickel(II) ions by silica–gel–immobilized waste biomass: biosorption characteristics in batch and dynamic flow mode. J Hazard Mater 163:1134–1141. doi:10.1016/j.jhazmat.2008.07.084

    Article  CAS  Google Scholar 

  • Akhtar N, Iqbal J, Iqbal M (2004) Removal and recovery of nickel(II) from aqueous solution by loofa sponge–immobilized biomass of Chlorella sorokiniana: characterization studies. J Hazard Mater 108:85–94. doi:10.1016/j.jhazmat.2004.01.002

    Article  CAS  Google Scholar 

  • Aksu Z (2002) Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel(II) ions onto Chlorella vulgaris. Process Biochem 38:89–99

    Article  CAS  Google Scholar 

  • Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40:997–1026. doi:10.1016/j.procbio.2004.04.008

    Article  CAS  Google Scholar 

  • Al–Qunaibit MH, Mekhemer WK, Zaghloul AA (2005) The adsorption of Cu(II) ions on bentonite–a kinetic study. J Colloid Interface Sci 283:316–321. doi:10.1016/j.jcis.2004.09.022

    Article  CAS  Google Scholar 

  • Altun T, Pehlivan E (2007) Removal of copper(II) ions from aqueous solutions by walnut–, hazelnut– and almond–shells. CLEAN – Soil Air Water 35:601–606

    Article  CAS  Google Scholar 

  • Álvarez–Ayuso E, García–Sánchez A (2003) Removal of heavy metals from waste waters by natural and Na–exchanged bentonites. Clay Clay Miner 51:475–480. doi:10.1346/CCMN.2003.0510501

    Article  CAS  Google Scholar 

  • Alves WL, Passoni AA (1997) Compost and vermicompost of urban solid waste in Licania tomentosa (benth.) seedlings production to arborisation. Pesqui Agropecu Bras 32:1053–1058

    Google Scholar 

  • Amini M, Younesi H, Bahramifar N (2009) Biosorption of nickel(II) from aqueous solution by Aspergillus niger: response surface methodology and isotherm study. Chemosphere 75:1483–1491. doi:10.1016/j.chemosphere.2009.02.025

    Article  CAS  Google Scholar 

  • Anastasi A, Varese GC, Marchisio VF (2005) Isolation and identification of fungal communities in compost and vermicompost. Mycologia 97:33–44. doi:10.3852/mycologia.97.1.33

    Article  Google Scholar 

  • Ansari AA (2008) Effect of vermicompost on the productivity of potato (Solanum tuberosum), spinach (Spinacia oleracea) and turnip (Brassica campestris). World J Agric Sci 4:333–336

    Google Scholar 

  • Aoyama M, Kishino M, Jo T–S (2004) Biosorption of Cr(VI) on Japanese cedar bark. Sep Sci Technol 39:1149–1162. doi:10.1081/SS-120028576

    Article  CAS  Google Scholar 

  • Apak R, Tutem E, Hugul M, Hizal J (1998) Heavy metal cation retention by unconventional sorbents (red muds and fly ashes). Water Res 32:430–440. doi:10.1016/S0043-1354(97)00204-2

    Article  CAS  Google Scholar 

  • Arancon NQ, Edwards CA, Lee S, Byrne R (2006) Effects of humic acids from vermicomposts on plant growth. Eur J Soil Biol 42:65–69. doi:10.1016/j.ejsobi.2006.06.004

    Article  CAS  Google Scholar 

  • Aravindhan R, Madhan B, Raghava Rao J, Unni Nair B (2004) Recovery and reuse of chromium from tannery wastewaters using Turbinaria ornata seaweed. J Chem Technol Biotechnol 79:1251–1258. doi:10.1002/jctb.1119

    Article  CAS  Google Scholar 

  • Arias M, Barral MT, Mejuto JC (2002) Enhancement of copper and cadmium adsorption on kaolin by the presence of humic acids. Chemosphere 48:1081–1088. doi:10.1016/S0045-6535(02)00169-8

    Article  CAS  Google Scholar 

  • Arshad M, Zafar MN, Younis S, Nadeem R (2008) The use of neem biomass for the biosorption of zinc from aqueous solutions. J Hazard Mater 157:534–540

    Article  CAS  Google Scholar 

  • Asthana RK, Chatterjee S, Singh SP (1995) Investigations on nickel biosorption and its remobilization. Process Biochem 30:729–734. doi:10.1016/0032-9592(94)00065-4

    Article  CAS  Google Scholar 

  • Atiyeh R, Subler S, Edwards CA, Metzger J (1999) Growth of tomato plants in horticultural potting media amended with vermicompost. Pedobiologia 43:724–728

    Google Scholar 

  • Atiyeh RM, Lee S, Edwards CA, Arancon NQ, Metzger JD (2002) The influence of humic acids derived from earthworm–processed organic wastes on plant growth. Bioresour Technol 84:7–14. doi:10.1016/S0960-8524(02)00017-2

    Article  CAS  Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry) (1988) Toxicological profile for nickel, ATSDR/U.S. Public Health Service, ATSDR/TP–88/19

    Google Scholar 

  • Azab MS, Peterson PJ (1989) The removal of Cd from wastewater by the use of biological sorbent. Water Sci Technol 21:1705–1706

    CAS  Google Scholar 

  • Bachman GR, Metzger JD (2008) Growth of bedding plants in commercial potting substrate amended with vermicompost. Bioresour Technol 99:3155–3161. doi:10.1016/j.biortech.2007.05.069

    Article  CAS  Google Scholar 

  • Bansal M, Garg U, Singh D, Garg VK (2009) Removal of Cr(VI) from aqueous solutions using pre–consumer processing agricultural waste: a case study of rice husk. J Hazard Mater 162:312–320. doi:10.1016/j.jhazmat.2008.05.037

    Article  CAS  Google Scholar 

  • Basci N, Kocadagistan E, Kocadagistan B (2004) Biosorption of copper (II) from aqueous solutions by wheat shell. Desalination 164:135–140. doi:10.1016/S0011-9164(04)00172-9

    Article  CAS  Google Scholar 

  • Baszynski T (1986) Interference of Cd2+ in functioning of the photosynthetic apparatus of higher plants. Acta Soc Bot Pol 99:291–304

    Google Scholar 

  • Baysal Z, Çinar E, Bulut E, Alkan H, Dogru M (2009) Equilibrium and thermodynamic studies on biosorption of Pb(II) onto Candida albicans biomass. J Hazard Mater 161:62–67. doi:10.1016/j.jhazmat.2008.02.122

    Article  CAS  Google Scholar 

  • Benedetti MF, Van Rinniburgh P (1995) Metal ion binding to humic substances: application of the non–ideal competitive adsorption model. Environ Sci Technol 29:446–457

    Article  CAS  Google Scholar 

  • Benítez E, Nogales R, Masciandaro G, Ceccanti B (2000) Isolation by isoelectric focusing of humic–urease complexes from earthworm (Eisenia fetida)–processed sewage sludges. Biol Fert Soils 31:489–493. doi:10.1007/s003740000197

    Article  Google Scholar 

  • Beolchini F, Pagnanelli F, Toro L, Vegliò F (2003) Biosorption of copper by Sphaerotilus natans immobilised in polysulfone matrix: equilibrium and kinetic analysis. Hydrometall 70:101–112. doi:10.1016/S0304-386X(03)00049-5

    Article  CAS  Google Scholar 

  • Bhattacharyya KG, Sharma A (2004) Adsorption of Pb(II) from aqueous solution by Azadirachta indica (neem) leaf powder. J Hazard Mater 113:97–109. doi:10.1016/j.jhazmat.2004.05.034

    Article  CAS  Google Scholar 

  • Bishnoi NR, Bajaj M, Sharma N, Gupta A (2004) Adsorption of Cr(VI) on activated rice husk carbon and activated alumina. Bioresour Technol 91:305–307. doi:10.1016/S0960-8524(03)00204-9

    Article  CAS  Google Scholar 

  • Boddu VM, Abburi K, Talbott JL, Smith ED (2003) Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent. Environ Sci Technol 37:4449–4456

    Article  CAS  Google Scholar 

  • Boni MR, Sbaffoni S (2009) The potential of compost–based biobarriers for Cr(VI) removal from contaminated groundwater: column test. J Hazard Mater 166:1087–1095. doi:10.1016/j.jhazmat.2008.12.036

    Article  CAS  Google Scholar 

  • Brune A, Urbach W, Dietz KJ (1994) Compartmentation and transport of zinc in barley primary leaves as basis mechanisms involved in zinc tolerance. Plant Cell Environ 17:153–162

    Article  CAS  Google Scholar 

  • Buhl KJ, Hamilton SJ (1990) Comparative toxicity of inorganic contaminants related by placer mining to early life stages of salmonids. Ecotoxicol Environ Saf 20:325–342

    Article  CAS  Google Scholar 

  • Çabuk A, Akar T, Tunali Gedikli S (2007) Biosorption of Pb(II) by industrial strain of Saccharomyces cerevisiae immobilized on the biomatrix of cone biomass of Pinus nigra: equilibrium and mechanism analysis. Chem Eng J 131:293–300. doi:10.1016/j.cej.2006.12.011

    Article  CAS  Google Scholar 

  • Canellas LP, Olivares FL, Okorokova–Façanha AL, Façanha AR (2002) Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+–ATPase activity in maize rots. Plant Physiol 130:1951–1957

    Article  CAS  Google Scholar 

  • Carrasquero–Durán A, Flores I (2009) Evaluation of lead(II) immobilization by a vermicompost using adsorption isotherms and IR spectroscopy. Bioresour Technol 100:1691–1694. doi:10.1016/j.biortech.2008.09.013

    Article  CAS  Google Scholar 

  • Carrasquero Durán A, Flores I, Perozo C, Pernalete Z (2006) Immobilization of lead by a vermicompost and its effect on white bean (Vigna Sinenis var. Apure) uptake. Int J Environ Sci Technol 3:203–212

    Article  Google Scholar 

  • Ceribasi IH, Yetis U (2001) Biosorption of Ni(II) and Pb(II) by Phanerochaete chrysosporium from a binary metal system – kinetics. Water SA 27:15–20

    CAS  Google Scholar 

  • Chandalia M, Garg A, Lutjohann D, von Bergmann K, Grundy SM, Brinkley LJ (2000) Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. New Engl J Med 342:1392–1398

    Article  CAS  Google Scholar 

  • Chen G, Zeng G, Tu X, Huang G, Chen Y (2005) A novel biosorbent: characterization of the spent mushroom compost and its application for removal of heavy metals. J Environ Sci (China) 17:756–760

    CAS  Google Scholar 

  • Cheremisinoff PN (1995) Handbook of water and wastewater treatment technology. Marcel Dekker Inc, New York

    Google Scholar 

  • Cho S, Jian Y (1998) Copper adsorption and removal from water by living mycelium of white–rot fungus phanerochaete chrysosporium. Water Res 32:2746–2752. doi:10.1016/S0043-1354(98)00024-4

    Article  Google Scholar 

  • Cho DH, Kim EY (2003) Characterization of Pb2+ biosorption from aqueous solution by Rhodotorula glutinis. Bioprocess Biosyst Eng 25:271–277

    Article  CAS  Google Scholar 

  • Chojnacka K (2005) Biosorption of Cr(III) ions by eggshells. J Hazard Mater 121:167–173. doi:10.1016/j.jhazmat.2005.02.004

    Article  CAS  Google Scholar 

  • Chojnacka K (2006) Biosorption of Cr(III) ions by wheat straw and grass: a systematic characterization of new biosorbents. Pol J Environ Stud 15:845–852

    CAS  Google Scholar 

  • Cimino G, Cappello RM, Caristi C, Toscano G (2005) Characterization of carbons from olive cake by sorption of wastewater pollutants. Chemosphere 61:947–955. doi:10.1016/j.chemosphere. 2005.03.042

    Article  CAS  Google Scholar 

  • Contreras–Ramos SM, Escamilla–Silva EM, Dendooven L (2005) Vermicomposting of biosolids with cow manure and oat straw. Biol Fert Soils 41:190–198. doi:10.1007/s00374-004-0821-8

    Article  Google Scholar 

  • Contreras–Ramos SM, Álvarez–Bernal D, Dendooven L (2006) Eisenia fetida increased removal of polycyclic aromatic hydrocarbons from soil. Environ Pollut 141:396–401. doi:10.1016/j.envpol.2005.08.057

    Article  CAS  Google Scholar 

  • Da Silva EA, Cossich ES, Tavares CRG, Filho LC, Guirardello R (2002) Modeling of copper(II) biosorption by marine alga Sargassum sp. In fixed–bed column. Process Biochem 38:791–799. doi:10.1016/S0032-9592(02)00231-5

    Article  Google Scholar 

  • Daldrup T, Haarhoff K, Szathmary SC (1983) Toedliche nickel sulfate–intoxikation. Berichte zur Gerichtlichen Medizin 41:141–144

    CAS  Google Scholar 

  • Dang VBH, Doan HD, Dang–Vu T, Lohi A (2009) Equilibrium and kinetics of biosorption of cadmium(II) and copper(II) ions by wheat straw. Bioresour Technol 100:211–219. doi:10.1016/j.biortech.2008.05.031

    Article  CAS  Google Scholar 

  • Das K, Keener HM (1997) Numerical model for the dynamic simulation of a large composting system. Trans ASAE 40:1179–1189

    Article  Google Scholar 

  • Davis TA, Volesky B, Vieira RHSF (2000) Sargassum seaweed as biosorbent for heavy metals. Water Res 34:4270–4278. doi:10.1016/S0043-1354(00)00177-9

    Article  CAS  Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330. doi:10.1016/S0043-1354(03)00293-8

    Article  CAS  Google Scholar 

  • de Carvalho RP, Guedes KJ, Pinheiro MVB, Krambrock K (2001) Biosorption of copper by dried plant leaves studied by electron paramagnetic resonance and infrared spectroscopy. Hydrometall 59:407–412. doi:10.1016/S0304-386X(00)00170-5

    Article  Google Scholar 

  • De Schamphelaere KAC, Stauber JL, Wilde KL, Markich SJ, Brown PL, Franklin NM, Creighton NM, Janssen CR (2005) Toward a biotic ligand model for freshwater green algae: surface–bound and internal copper are better predictors of toxicity than free Cu2+–ion activity when pH is varied. Environ Sci Technol 39:2067–2072

    Article  CAS  Google Scholar 

  • Demirbas E, Kobya M, Senturk E, Ozkan T (2004) Adsorption kinetics for the removal of chromium (VI) from aqueous solutions on the activated carbons prepared from agricultural wastes. Water SA 30:533–539

    Article  CAS  Google Scholar 

  • Deng L, Su Y, Su H, Wang X, Zhu X (2007) Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis. J Hazard Mater 143:220–225. doi:10.1016/j.jhazmat.2006.09.009

    Article  CAS  Google Scholar 

  • Dominguez J, Edwards CA, Subler S (1997) A comparison of vermicomposting and composting. Biocycle 38:57–59

    CAS  Google Scholar 

  • Dönmez C, Aksu Z (2001) Bioaccumulation of copper(II) and nickel(II) by the non–adapted and adapted growing Candida Sp. Water Res 35:1425–1434. doi:10.1016/S0043-1354(00)00394-8

    Article  Google Scholar 

  • Drasch GA (1993) Increase of cadmium body burden for this century. Sci Total Environ 67:75–89. doi:10.1016/0048-9697(83)90105-5

    Google Scholar 

  • Dries J, Bastiaens L, Springael D, Kuypers S, Agathos SN, Diels L (2005) Effect of humic acids on heavy metal removal by zero–valent iron in batch and continuous flow column systems. Water Res 39:3531–3540. doi:10.1016/j.watres.2005.06.020

    Article  CAS  Google Scholar 

  • Ekmekyapar F, Aslan A, Kemal Bayhan Y, Cakici A (2006) Biosorption of copper(II) by nonliving lichen biomass of Cladonia rangiformis hoffm. J Hazard Mater 137:293–298. doi:10.1016/j.jhazmat.2006.02.003

    Article  CAS  Google Scholar 

  • Elangovan R, Philip L, Chandraraj K (2008) Biosorption of hexavalent and trivalent chromium by palm flower (Borassus aethiopum). Chem Eng J 141:99–111. doi:10.1016/j.cej.2007.10.026

    Article  CAS  Google Scholar 

  • El–Eswed B, Khalili F (2006) Adsorption of Cu(II) and Ni(II) on solid humic acid from the Azraq area, Jordan. J Colloid Interface Sci 299:497–503. doi:10.1016/j.jcis.2006.02.048

    Article  CAS  Google Scholar 

  • Elouear Z, Bouzid J, Boujelben N, Feki M, Montiel A (2008) The use of exhausted olive cake ash (EOCA) as a low cost adsorbent for the removal of toxic metal ions from aqueous solutions. Fuel 87:2582–2589. doi:10.1016/j.fuel.2008.01.019

    Article  CAS  Google Scholar 

  • EPA (Environmental Protection Agency) (1990) Environmental pollution control alternatives. EPA/625/5–90/025, EPA/625/4–89/023, Cincinnati, US

    Google Scholar 

  • Erhan D, Kobya M, Elif S, Ozkan T (2004) Adsorption kinetics for the removal of chromium III from aqueous solutions on the activated carbonaceous prepared from agricultural wastes. Water SA 30:533–540

    Google Scholar 

  • Esmaeili A, Beirami P, Rustaiyan A, Rafiei F, Ghasemi S, Assadian F (2008) Evaluation of the marine alga Gracilaria Corticata for the biosorption of Cu (II) from wastewater in a packed column. J Mar Environ Eng 9:65–73

    CAS  Google Scholar 

  • Fernando A, Monteiro S, Pinto F, Mendes B (2009) Production of biosorbents from waste olive cake and its adsorption characteristics for Zn2+ ion. Sustainability 1:277–297

    Article  CAS  Google Scholar 

  • Ferreira Fontes MP, Teixeira De Matos A, Da Costa LM, Lima Neves Julio C (2000) Competitive adsorption of zinc, cadmium, copper, and lead in three highly–weathered Brazilian soils. Commun Soil Sci Plant Anal 31:2939–2958

    Article  Google Scholar 

  • Figueira MM, Volesky B, Ciminelli VST, Roddick FA (2000) Biosorption of metals in brown seaweed biomass. Water Res 34:196–204. doi:10.1016/S0043-1354(99)00120-7

    Article  CAS  Google Scholar 

  • Fosmire GJ (1990) Zinc toxicity. Am J Clin Nutr 51:225–227

    CAS  Google Scholar 

  • Gajalakshmi S, Abbasi SA (2008) Solid waste management by composting: state of the art. Crit Rev Environ Sci Technol 38:311–400. doi:10.1080/10643380701413633

    Article  CAS  Google Scholar 

  • Gajalakshmi S, Ramasamy EV, Abbasi SA (2005) Composting–vermicomposting of leaf litter ensuing from the trees of mango (Mangifera indica). Bioresour Technol 96:1057–1061. doi:10.1016/j.biortech.2004.09.002

    Article  CAS  Google Scholar 

  • Gale TF (1978) Embryotoxic effects of chromium trioxide in hamsters. Environ Res 16:101–109

    Article  CAS  Google Scholar 

  • Gao K, Pearce J, Jones J, Taylor C (1999) Interaction between peat, humic acid and aqueous metal ions. Environ Geochem Health 21:13–26. doi:10.1023/A:1006592627852

    Article  CAS  Google Scholar 

  • Gardea–Torresdey JL, Tiemann KJ, Gonzalez JH, Cano–Aguilera I, Henning JA, Townsend MS (1996a) Removal of nickel ions from aqueous solution by biomass and silica–immobilized biomass of Medicago sativa (alfalfa). J Hazard Mater 49:205–216. doi:10.1016/0304-3894(96)01757-8

    Article  Google Scholar 

  • Gardea–Torresdey JL, Tang L, Salvador JM (1996b) Copper adsorption by esterified and unesterified fractions of Sphagnum peat moss and its different humic substances. J Hazard Mater 48:191–206. doi:10.1016/0304-3894(95), 00156-5

    Article  Google Scholar 

  • Garg P, Gupta A, Satya S (2006) Vermicomposting of different types of waste using Eisenia foetida: a comparative study. Bioresour Technol 97:391–395. doi:10.1016/j.biortech.2005.03.009

    Article  CAS  Google Scholar 

  • Garg UK, Kaur MP, Garg VK, Sud D (2007) Removal of hexavalent chromium from aqueous solution by agricultural waste biomass. J Hazard Mater 140:60–68. doi:10.1016/j.jhazmat.2006.06.056

    Article  CAS  Google Scholar 

  • Garg U, Kaur MP, Jawa JK, Sud D, Garg VK (2008) Removal of cadmium (II) from aqueous solutions by adsorption on agricultural waste biomass. J Hazard Mater 154:1149–1157. doi:10.1016/j.jhazmat.2007.11.040

    Article  CAS  Google Scholar 

  • Gibert O, de Pablo J, Luis Cortina J, Ayora C (2005) Sorption studies of Zn(II) and Cu(II) onto vegetal compost used on reactive mixtures for in situ treatment of acid mine drainage. Water Res 39:2827–2838. doi:10.1016/j.watres.2005.04.056

    Article  CAS  Google Scholar 

  • Göksungur Y, Üren S, Güvenç U (2005) Biosorption of cadmium and lead ions by ethanol treated waste baker’s yeast biomass. Bioresour Technol 99:103–109. doi:10.1016/j.biortech.2003.04.002

    Article  CAS  Google Scholar 

  • Gondar D, López R, Fiol S, Antelo JM, Arce F (2006) Cadmium, lead, and copper binding to humic acid and fulvic acid extracted from an ombrotrophic peat bog. Geoderma 135:196–203. doi:10.1016/j.geoderma.2005.12.003

    Article  CAS  Google Scholar 

  • Goyer R (1991) Toxic effects of metals. In: Amdur MO, Doull JD, Klaassen CD (eds) Casarett and Doull’s toxicology, 4th edn. Pergamon Press, New York, pp 623–680

    Google Scholar 

  • Green–Pedersen H, Jensen BT, Pind N (1997) Nickel adsorption on MnO2, Fe(OH)3, montmorillonite, humic acid and calcite: a comparative study. Environ Technol 18:807–815

    Article  Google Scholar 

  • Gupta SS, Bhattacharyya KG (2006) Adsorption of Ni(II) on clays. J Colloid Interface Sci 295:21–32. doi:10.1016/j.jcis.2005.07.073

    Article  CAS  Google Scholar 

  • Gupta R, Garg VK (2008) Stabilization of primary sewage sludge during vermicomposting. J Hazard Mater 153:1023–1030. doi:10.1016/j.jhazmat.2007.09.055

    Article  CAS  Google Scholar 

  • Gupta VK, Shrivastava AK, Jain N (2001) Biosorption of chromium(VI) from aqueous solutions by green algae spirogyra species. Water Res 35:4079–4085. doi:10.1016/S0043-1354(01)00138-5

    Article  CAS  Google Scholar 

  • Han R, Li H, Li Y, Zhang J, Xiao H, Shi J (2006) Biosorption of copper and lead ions by waste beer yeast. J Hazard Mater 137:1569–1576. doi:10.1016/j.jhazmat.2006.04.045

    Article  CAS  Google Scholar 

  • Hanif MA, Nadeem R, Bhatti HN, Ahmad NR, Ansari TM (2007) Ni(II) biosorption by cassia fistula (golden shower) biomass. J Hazard Mater 139:345–355. doi:10.1016/j.jhazmat.2006.06.040

    Article  CAS  Google Scholar 

  • Harman G, Patrick R, Spittler T (2007) Removal of heavy metals from polluted waters using lignocellulosic agricultural waste products. Ind Biotechnol 3:366–374

    Article  CAS  Google Scholar 

  • Hatherill JR (1981) A review of the mutagenicity of chromium. Drug Chem Toxicol 4:185–195

    Article  CAS  Google Scholar 

  • Hervas L, Mazuelos C, Senesi N, Saiz–Jimenez C (1989) Chemical and physico–chemical characterization of vermicomposts and their humic acid fractions. Sci Total Environ 81–82:543–550

    Article  Google Scholar 

  • Hiatt V, Huff JE (1975) Environmental impact of cadmium. Overview. Int J Environ Stud 7:277–285

    Article  CAS  Google Scholar 

  • Holan ZR, Volesky B, Prasetyo I (1993) Biosorption of cadmium by biomass of marine algae. Biotechnol Bioeng 41:819–825. doi:10.1002/bit.260410808

    Article  CAS  Google Scholar 

  • Hough RL, Tye AM, Crout NMJ, McGrath SP, Zhang H, Young SD (2005) Evaluating a ‘free ion activity Model’ applied to metal uptake by Lolium perenne L. Grown in contaminated soils. Plant Soil 270:1–12

    Article  CAS  Google Scholar 

  • Hu MJ, Wei YL, Yang YW, Lee JF (2003) Immobilization of chromium(VI) with debris of aquatic plants. Bull Environ Contam Toxicol 71:840–847. doi:10.1007/s00128-003-0212-0

    Article  CAS  Google Scholar 

  • Ismael Acosta R, Rodríguez X, Gutiérrez C, de Guadalupe MM (2004) Biosorption of chromium (VI) from aqueous solutions onto fungal biomass. Bioinorg Chem Appl 2:1–7. doi:10.1155/S1565363304000019

    Article  Google Scholar 

  • Ivanitsa VO, Vasilyeva TV, Buchtiyarov AE, Lindström EB, McEldowney S (1999) Interactions between marine bacteria and heavy metals’. In: Amils R, Ballester A (eds) Biohydrometallurgy and the environment toward the mining of the 21st century – part B. Elsevier, Amsterdam, pp 317–325

    Google Scholar 

  • Jadia CD, Fulekar MH (2008) Phytoremediation: the application of vermicompost to remove zinc, cadmium, copper, nickel and lead by sunflower plant. Environ Eng Manag J 7:547–558

    CAS  Google Scholar 

  • Jain M, Garg VK, Kadirvelu K (2009) Chromium(VI) removal from aqueous system using Helianthus annuus (sunflower) stem waste. J Hazard Mater 162:365–372. doi:10.1016/j.jhazmat.2008.05.048

    Article  CAS  Google Scholar 

  • Jordão CP, Pereira MG, Einloft R, Santana MB, Bellato CR, de Mello JWV (2002) Removal of Cu, Cr, Ni, and Zn from electroplating wastes and synthetic solutions by vermicompost of cattle manure. J Environ Sci Health A37:875–892

    Article  Google Scholar 

  • Jordão CP, Braganç R, Fernandes A, de Lima RK, de Souza NB, Martins de Barros P (2009) Zn(II) adsorption from synthetic solution and kaolin wastewater onto vermicompost. J Hazard Mater 162:804–811. doi:10.1016/j.jhazmat.2008.05.104

    Article  CAS  Google Scholar 

  • Kaewsarn P (2002) Biosorption of copper(II) from aqueous solutions by pre–treated biomass of marine algae Padina sp. Chemosphere 47:1081–1085. doi:10.1016/S0045-6535(01)00324-1

    Article  CAS  Google Scholar 

  • Kalyani S, Srinivasa Rao P, Krishnaiah A (2004) Removal of nickel (II) from aqueous solutions using marine macroalgae as the sorbing biomass. Chemosphere 57:1225–1229. doi:10.1016/j.chemosphere.2004.08.057

    Article  CAS  Google Scholar 

  • Kamergam N, Alagumalai K, Daniel T (1999) Effect of vermicompost on the growth and yield of green gram (Phaseolus aurus Roxb.). Trop Agric 76:143–146

    Google Scholar 

  • Kaushik P, Garg VK (2004) Dynamics of biological and chemical parameters during vermicomposting of solid textile mill sludge mixed with cow dung and agricultural residues. Bioresour Technol 94:203–209. doi:10.1016/j.biortech.2003.10.033

    Article  CAS  Google Scholar 

  • Kidwai M, Mohan R (2005) Green chemistry: an innovative technology. Found Chem 7:269–287

    Article  CAS  Google Scholar 

  • King P, Anuradha K, Lahari SB, Kumar YP, Prasad VSRK (2008) Biosorption of zinc from aqueous solution using Azadirachta indica bark: equilibrium and kinetic studies. J Hazard Mater 152:324–329. doi:10.1016/j.jhazmat.2007.06.101

    Article  CAS  Google Scholar 

  • Klimmek S, Stan H–J, Wilke A, Bunke G, Buchholz R (2001) Comparative analysis of the biosorption of cadmium, lead, nickel, and zinc by algae. Environ Sci Technol 35:283–288

    Article  CAS  Google Scholar 

  • Kobya M (2004) Removal of Cr(VI) from aqueous solutions by adsorption onto hazelnut shell activated carbon: kinetic and equilibrium studies. Bioresour Technol 91:317–321. doi:10.1016/j.biortech.2003.07.001

    Article  CAS  Google Scholar 

  • Kocasoy G, Güvener Z (2009) Efficiency of compost in the removal of heavy metals from the industrial wastewater. Environ Geol 57:291–296. doi:10.1007/s00254-008-1372-3

    Article  CAS  Google Scholar 

  • Krishnan KA, Anirudhan TS (2003) Removal of cadmium(II) from aqueous solutions by steamactivated sulphurised carbon prepared from sugar–cane bagasse pith: kinetics and equilibrium studies. Water SA 29:147–156

    Article  CAS  Google Scholar 

  • Kumar U, Bandyopadhyay M (2006) Sorption of cadmium from aqueous solution using pretreated rice husk. Bioresour Technol 97:104–109. doi:10.1016/j.biortech.2005.02.027

    Article  CAS  Google Scholar 

  • Kuzovkina YA, Knee M, Quigley MF (2004) Cadmium and copper uptake and translocation in five willow (Salix L.) species. Int J Phytoremediation 6:269–287. doi:10.1080/16226510490496726

    Article  CAS  Google Scholar 

  • Lai Y–L, Annadurai G, Huang F–C, Lee J–F (2008) Biosorption of Zn(II) on the different Ca–alginate beads from aqueous solution. Bioresour Technol 99:6480–6487. doi:10.1016/j.biortech.2007.11.041

    Article  CAS  Google Scholar 

  • Laj S, Jain VK, Tandon SK (1984) Comparative toxicity of trivalent and hexavalent chromium IV: biochemical changes in blood and liver of rat. J Environ Biol 5:29–35

    CAS  Google Scholar 

  • Landgraf MD, Javaroni Rde C, Rezende MO (1998) Characterization of humic substances by capillary electrophoresis. J Capillary Electrophor 5:193–199

    CAS  Google Scholar 

  • Laurino JP (2008) Removal of lead (II) ions by poly(2–octadecyl butanedioic acid): isothermal and kinetic studies. J Macromol Sci A: Pur Appl Chem 45:612–619. doi:10.1080/10601320802168736

    Article  CAS  Google Scholar 

  • Leonard A, Gerber GB (1989) Zinc toxicity: does it exist? J Am Coll Toxicol 8:1285–1290

    Article  Google Scholar 

  • Leonard A, Lauwerys RR (1980) Carcinogenicity and mutagenicity of chromium. Mutat Res/Rev Gene Toxicol 76:227–239. doi:10.1016/0165-1110(80)90018-4

    Article  CAS  Google Scholar 

  • Lin X, Burns RC, Lawrance GA (2003) Effect of Cd(II) and anion type on the ageing of ferrihydrite and its subsequent leaching under neutral and alkaline conditions. Wat Air Soil Pollut 143:155–177

    Article  CAS  Google Scholar 

  • Lin X, Burns RC, Lawrance GA (2005) Composition on the precipitation of cadmium(Ii) using lime and magnesia. Wat Air Soil Pollut 165:131–152

    Article  CAS  Google Scholar 

  • Liu A, Gonzalez RD (2000) Modeling adsorption of copper(II), cadmium(II) and lead(II) on purified humic acid. Langmuir 16:3902–3909

    Article  CAS  Google Scholar 

  • Lo W, Chua LWH, Lam KH, Bi SP (1999) A comparative investigation on the adsorption of lead (II) by filamentous fungal biomass. Chemosphere 39:2723–2736. doi:10.1016/S0045-6535(99)00206-4

    Article  CAS  Google Scholar 

  • Logsdon G (1994) Worldwide progress in vermicomposting: earthworms and composting. Biocycle 35:63–65

    Google Scholar 

  • Loh TC, Lee YC, Liang JB, Tan D (2005) Vermicomposting of cattle and goat manures by Eisenia foetida and their growth and reproduction performance. Bioresour Technol 96:111–114. doi:10.1016/j.biortech.2003.03.001

    Article  CAS  Google Scholar 

  • Long X, Luo X, Wang Y, Li Z (2009) Sorption of Pb(II) from aqueous solution by konjac glucomannan beads. Sci China Ser E: Tech Sci 52:223–226

    Article  CAS  Google Scholar 

  • López A, Lázaro N, Morales S, Marqués AM (2002) Nickel biosorption by free and immobilized cells of Pseudomonas fluorescens 4 F39: a comparative study. Wat Air Soil Pollut 135:157–172

    Article  Google Scholar 

  • Loukidou MX, Zouboulis AI, Karapantsios TD, Matis KA (2004) Equilibrium and kinetic modeling of chromium(VI) biosorption by Aeromonas caviae. Colloids Surf A: Physicochem Eng Aspects 242:93–104. doi:10.1016/j.colsurfa.2004.03.030

    Article  CAS  Google Scholar 

  • Lu S, Gibb SW (2008) Copper removal from wastewater using spent–grain as biosorbent. Bioresour Technol 99:1509–1517. doi:10.1016/j.biortech.2007.04.024

    Article  CAS  Google Scholar 

  • Lu X, Kruatrachue M, Pokethitiyook P, Homyok K (2004) Removal of cadmium and zinc by water hyacinth, eichhornia crassipes. ScienceAsia 30:93–103

    Article  CAS  Google Scholar 

  • Lu LT, Chang IC, Hsiao TY, Yu YH, Ma HW (2007) Identification of pollution source of cadmium in soil: application of material flow analysis and a case study in Taiwan. Environ Sci Pollut Res Int 14:49–59

    Article  CAS  Google Scholar 

  • Lu D, Cao Q, Cao X, Luo F (2009) Removal of Pb(II) using the modified lawny grass: mechanism, kinetics, equilibrium and thermodynamic studies. J Hazard Mater 166:239–247. doi:10.1016/j.jhazmat.2008.11.018

    Article  CAS  Google Scholar 

  • Lugo–Lugo V, Hernández–López S, Barrera–Díaz C, Ureña–Núñez F, Bilyeu B (2009) A comparative study of natural, formaldehyde–treated and copolymer–grafted orange peel for Pb(II) adsorption under batch and continuous mode. J Hazard Mater 161:1255–1264. doi:10.1016/j.jhazmat.2008.04.087

    Article  CAS  Google Scholar 

  • Machado RM, Correia MJN, Carvalho JMR (2003) Integrated process for biosorption of copper from liquid effluents using grape stalks. Sep Sci Technol 38:2237–2254. doi:10.1081/SS-120021622

    Article  CAS  Google Scholar 

  • Majumdar SS, Das SK, Saha T, Panda GC, Bandyopadhyoy T, Guha AK (2008) Adsorption behavior of copper ions on Mucor rouxii biomass through microscopic and FTIR analysis. Colloids Surf B Biointerfaces 63:138–145. doi:10.1016/j.colsurfb.2007.11.022

    Article  CAS  Google Scholar 

  • Malandrino M, Abollino O, Giacomino A, Aceto M, Mentasti E (2006) Adsorption of heavy metals on vermiculite: influence of pH and organic ligands. J Colloid Interface Sci 299:537–546. doi:10.1016/j.jcis.2006.03.011

    Article  CAS  Google Scholar 

  • Malkoc E (2006) Ni(II) removal from aqueous solutions using cone biomass of Thuja orientalis. J Hazard Mater 137:899–908. doi:10.1016/j.jhazmat.2006.03.004

    Article  CAS  Google Scholar 

  • Malkoc E, Nuhoglu Y (2005) Investigations of nickel(II) removal from aqueous solutions using tea factory waste. J Hazard Mater 127:120–128. doi:10.1016/j.jhazmat.2005.06.030

    Article  CAS  Google Scholar 

  • Maranon E, Sastre H (1991) Heavy metal removal in packed beds using apple wastes. Bioresour Technol 38:39–43

    Article  CAS  Google Scholar 

  • Markich SJ, Brown PL, Jeffree RA, Lim RP (2003) The effects of pH and dissolved organic carbon on the toxicity of cadmium and copper to a freshwater bivalve: further support for the extended free ion activity model. Arch Environ Contam Toxicol 45:479–491. doi:10.1007/s00244-003-2175-x

    Article  CAS  Google Scholar 

  • Martínez M, Miralles N, Hidalgo S, Fiol N, Villaescusa I, Poch J (2006) Removal of lead(II) and cadmium(II) from aqueous solutions using grape stalk waste. J Hazard Mater 133:203–211. doi:10.1016/j.jhazmat.2005.10.030

    Article  CAS  Google Scholar 

  • Martín–Gil J, Navas–Gracia LM, Gómez–Sobrino E, Correa–Guimaraes A, Hernández–Navarro S, Sánchez–Báscones M, del Carmen Ramos–Sánchez M (2008) Composting and vermicomposting experiences in the treatment and bioconversion of asphaltens from the prestige oil spill. Bioresour Technol 99:1821–1829. doi:10.1016/j.biortech.2007.03.031

    Article  CAS  Google Scholar 

  • Mason IG (2006) Mathematical modeling of the composting process: a review. Waste Manag 26:3–21. doi:10.1016/j.wasman.2005.01.021

    Article  CAS  Google Scholar 

  • Mata YN, Blázquez ML, Ballester A, González F, Muñoz JA (2008) Characterization of the biosorption of cadmium, lead and copper with the brown alga Fucus vesiculosus. J Hazard Mater 158:316–323. doi:10.1016/j.jhazmat.2008.01.084

    Article  CAS  Google Scholar 

  • McCarty MF (2002) Glucomannan minimizes the postprandial insulin surge: a potential adjuvant for hepatothermic therapy. Med Hypotheses 58:487–490

    Article  CAS  Google Scholar 

  • Melo JS, D’Souza SF (2004) Removal of chromium by mucilaginous seeds of Ocimum basilicum. Bioresour Technol 92:151–155. doi:10.1016/j.biortech.2003.08.015

    Article  CAS  Google Scholar 

  • Modher A, Hussain AS, Pozi M (2009) Characterization of the adsorption of the lead (II) by the nonliving biomass Spirogyra neglecta (Hasall) Kützing. Am J Biochem Biotechnol 5:75–83

    Article  Google Scholar 

  • Mohan D, Singh KP, Singh VK (2006) Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth. J Hazard Mater 135:280–295. doi:10.1016/j.jhazmat.2005.11.075

    Article  CAS  Google Scholar 

  • Mohanty K, Jha M, Meikap BC, Biswas MN (2006) Biosorption of Cr(VI) from aqueous solutions by Eichhornia crassipes. Chem Eng J 117:71–77. doi:10.1016/j.cej.2005.11.018

    Article  CAS  Google Scholar 

  • Mohee R, Mudhoo A (2005) Analysis of physical properties of an in–vessel composting matrix. Powder Technol 155:92–99. doi:10.1016/j.powtec.2005.05.051

    Article  CAS  Google Scholar 

  • Moon S–H, Park C–S, Kim Y–J, Park Y–I (2006) Biosorption isotherms of Pb (II) and Zn (II) on Pestan, an extracellular polysaccharide, of Pestalotiopsis sp. KCTC 8637P. Process Biochem 41:312–316. doi:10.1016/j.procbio.2005.07.013

    Article  CAS  Google Scholar 

  • Mudhoo A, Mohee R (2006) Sensitivity analysis and parameter optimization of a heat loss model for a composting system. J Environ Informatics 8:100–110. doi:10.3808/jei.200600080

    Article  Google Scholar 

  • Mudhoo A, Mohee R (2007) Overall heat transfer coefficients in organic substrates composting. J Environ Informatics 9:87–99. doi:10.3808/jei.200700090

    Article  Google Scholar 

  • Mudhoo A, Mohee R (2008) Modeling heat loss during self–heating composting based on combined fluid film theory and boundary layer concepts. J Environ Informatics 11:74–89. doi:10.3808/jei.200800113

    Article  Google Scholar 

  • Mukhopadhyay B, Sundquist J, Schmitz RJ (2007) Removal of Cr(VI) from Cr–contaminated groundwater through electrochemical addition of Fe(II). J Environ Manag 82:66–76. doi:10.1016/j.jenvman.2005.12.005

    Article  CAS  Google Scholar 

  • Mullen MD, Wolf DC, Ferris FG, Beveridge TJ, Flemming CA, Bailey GW (1989) Bacterial sorption of heavy metals. Appl Environ Microbiol 55:3143–3149

    CAS  Google Scholar 

  • Murray K, Linder PW (1984) Fulvic acids: structure and metal binding. Predominant metal binding sites. J Soil Sci 35:219–222

    Article  Google Scholar 

  • Muscolo A, Bovolo F, Gionfriddo F, Nardi S (1999) Earthworm humic matter produces auxins–like effect on Daucus carota cell growth and nitrate metabolism. Soil Biol Biochem 31:1303–1311

    Article  CAS  Google Scholar 

  • Nadeem R, Nasir MH, Hanif MS (2009) Pb (II) sorption by acidically modified cicer arientinum biomass. Chem Eng J 150:40–48. doi:10.1016/j.cej.2008.12.001

    Article  CAS  Google Scholar 

  • Nagavallemma KP, Wani SP, Lacroix S, Padmaja VV, Vineela C, Babu Rao M, Sahrawat KL (2004) Vermicomposting: recycling wastes into valuable organic fertilizer, vol 8, Global theme on agrecosystems. International Crops Research Institute for the Semi–Arid Tropics, Patancheru, p 20

    Google Scholar 

  • Naja G, Volesky B (2006) Behavior of the mass transfer zone in a biosorption column. Environ Sci Technol 40:3996–4003. doi:10.1021/es051542p

    Article  CAS  Google Scholar 

  • Nakasaki K, Nag K, Karita S (2005) Microbial succession associated with organic matter decomposition during thermophilic composting of organic waste. Waste Manag Res 23:48–56. doi:10.1177/0734242X05049771

    Article  CAS  Google Scholar 

  • Noeline BF, Manohar DM, Anirudhan TS (2005) Kinetic and equilibrium modelling of lead(II) sorption from water and wastewater by polymerized banana stem in a batch reactor. Sep Purif Technol 45:131–140. doi:10.1016/j.seppur.2005.03.004

    Article  CAS  Google Scholar 

  • Norseth T (1981) The carcinogenicity of chromium. Environ Health Perspect 40:121–130

    Article  CAS  Google Scholar 

  • Oke IA, Olarinoye NO, Adewusi SRA (2008) Adsorption kinetics for arsenic removal from aqueous solutions by untreated powdered eggshell. Adsorpt 14:73–83. doi:10.1007/s10450-007-9047-z

    Article  CAS  Google Scholar 

  • Özer A, Gürbüz G, Çalimli A, Körbahti BK (2008) Investigation of nickel(II) biosorption on Enteromorpha prolifera: optimization using response surface analysis. J Hazard Mater 152:778–788. doi:10.1016/j.jhazmat.2007.07.088

    Article  CAS  Google Scholar 

  • Öztürk A, Artan T, Ayar A (2004) Biosorption of nickel(II) and copper(II) ions from aqueous solution by Streptomyces coelicolor A3(2). Colloids Surf B Biointerfaces 34:105–111. doi:10.1016/j.colsurfb.2003.11.008

    Article  CAS  Google Scholar 

  • Padmavathy V (2008) Biosorption of nickel(II) ions by baker’s yeast: kinetic, thermodynamic and desorption studies. Bioresour Technol 99:3100–3109. doi:10.1016/j.biortech.2007.05.070

    Article  CAS  Google Scholar 

  • Pamukoglu MY, Kargi F (2006) Removal of copper(II) ions from aqueous medium by biosorption onto powdered waste sludge. Process Biochem 41:1047–1054. doi:10.1016/j.procbio.2005.11.010

    Article  CAS  Google Scholar 

  • Panda GC, Das SK, Chatterjee S, Maity PB, Bandopadhyay TS, Guha AK (2006) Adsorption of cadmium on husk of Lathyrus sativus: physico–chemical study. Colloids Surf B Biointerfaces 50:49–54. doi:10.1016/j.colsurfb.2006.03.022

    Article  CAS  Google Scholar 

  • Parker DR, Pedler JF (1997) Reevaluating the free–ion activity model of trace metal availability to higher plants. Plant Soil 196:223–228. doi:10.1023/A:1004249923989

    Article  CAS  Google Scholar 

  • Parker DR, Pedler JF, Ahnstrom ZAS, Resketo M (2001) Reevaluating the free–ion activity model of trace metal toxicity toward higher plants: experimental evidence with copper and zinc. Environ Toxicol Chem 20:899–906. doi:10.1897/1551-5028

    Article  CAS  Google Scholar 

  • Patterson JW (1977) Wastewater treatment. Science Publishers, New York

    Google Scholar 

  • Paulino AT, Santos LB, Nozaki J (2008) Removal of Pb2+, Cu2+, and Fe3+ from battery manufacture wastewater by chitosan produced from silkworm chrysalides as a low–cost adsorbent. React Funct Polym 68:634–642. doi:10.1016/j.reactfunctpolym.2007.10.028

    Article  CAS  Google Scholar 

  • Pehlivan E, Altun T (2008) Biosorption of chromium(VI) ion from aqueous solutions using walnut, hazelnut and almond shell. J Hazard Mater 155:378–384. doi:10.1016/j.jhazmat.2007.11.071

    Article  CAS  Google Scholar 

  • Peng K, Li X, Luo C, Shen Z (2006) Vegetation composition and heavy metal uptake by wild plants at three contaminated sites in Xiangxi area, China. J Environ Sci Health Part A 40:65–76

    Article  CAS  Google Scholar 

  • Pereira MG, Arruda MAZ (2003) Vermicompost as a natural adsorbent material: characterization and potentialities for cadmium adsorption. J Braz Chem Soc 14:39–47

    Article  CAS  Google Scholar 

  • Pérez–Marín AB, Meseguer Zapata V, Ortuño JF, Aguilar M, Sáez J, Lloréns M (2007) Removal of cadmium from aqueous solutions by adsorption onto orange waste. J Hazard Mater 139:122–131. doi:10.1016/j.jhazmat.2006.06.008

    Article  CAS  Google Scholar 

  • Periasamy K, Namasivayam C (1995) Removal of nickel(II) from aqueous solution and plating industry wastewater using an agriculture waste peanut hulls. Waste Manag 15:63–68. doi:10.1016/0956-053X(94)00071-S

    Article  CAS  Google Scholar 

  • Pommery J, Ebenga JP, Imbenote Palavit J, Erb F (1988) Determination of the complexing ability of a standard humic acid towards cadmium ions. Water Res 22:185–189

    Article  CAS  Google Scholar 

  • Popuri Srinivasa R, Vijaya Y, Boddu VM, Abburi K (2009) Adsorptive removal of copper and nickel ions from water using chitosan coated PVC beads. Bioresour Technol 100:194–199. doi:10.1016/j.biortech.2008.05.041

    Article  CAS  Google Scholar 

  • Post MA, Campbell PG (1980) Lead chromate pigments – a literature survey on environmental and toxic effects. U.S. Dep. Comm Nat Bur Stand Rep NBSIR 80–1974, p 38

    Google Scholar 

  • Pümpel T, Macaskie LE, Finlay JA, Diels L, Tsezos M (2003) Nickel removal from nickel plating waste water using a biologically active moving–bed sand filter. Biometals 16:567–581

    Article  Google Scholar 

  • Rahmani K, Mahvi AH, Vaezi F, Mesdaghinia AR, Nabizade R, Nazmara Sh (2009) Bioremoval of lead by use of waste activated sludge. Int J Environ Res 3:471–476

    CAS  Google Scholar 

  • Ravikumar TN, Yeledhalli NA, Ravi MV, Narayana Rao K (2008) Physical, physico–chemcial and enzymes activities of vermiash compost. Karnataka J Agric Sci 21:222–226

    Google Scholar 

  • Reddy KR, Chinthamreddy S (2003) Sequentially enhanced electrokinetic remediation of heavy metals in low buffering clayey soils. J Geotech Geoenviron Eng 129:263–277

    Article  CAS  Google Scholar 

  • Riaz M, Nadeem R, Hanif MA, Ansari TM, Khalil–ur–Rehman (2009) Pb(II) biosorption from hazardous aqueous streams using Gossypium hirsutum (cotton) waste biomass. J Hazard Mater 161:88–94. doi:10.1016/j.jhazmat.2008.03.096

    Article  CAS  Google Scholar 

  • Richard TL, Walker LP, Gossett JM (2006) The effects of oxygen on solid–state biodegradation kinetics. Biotechnol Prog 22:60–69. doi:10.1021/bp050171d

    Article  CAS  Google Scholar 

  • Romero E, Plaza C, Senesi N, Nogales R, Polo A (2007) Humic acid–like fractions in raw and vermicomposted winery and distillery wastes. Geoderma 139:397–406. doi:10.1016/j.geoderma.2007.03.009

    Article  CAS  Google Scholar 

  • Ryckeboer J, Mergaert J, Vaes K, Klammer S, De Clercq D, Coosemans J, Insam H, Swings J (2003) A survey of bacteria and fungi occurring during composting and self–heating processes. Ann Microbiol 53:349–410

    Google Scholar 

  • Saeed A, Iqbal M (2003) Bioremoval of cadmium from aqueous solution by black gram husk (Cicer arientinum). Water Res 37:3472–3480. doi:10.1016/S0043-1354(03)00175-1

    Article  CAS  Google Scholar 

  • Sarı A, Tuzen M (2008) Biosorption of cadmium(II) from aqueous solution by red algae (Ceramium virgatum): equilibrium, kinetic and thermodynamic studies. J Hazard Mater 157:448–454. doi:10.1016/j.jhazmat.2008.01.008

    Article  CAS  Google Scholar 

  • Savvaidis I, Hughes MN, Poole RK (2003) Copper biosorption by Pseudomonas cepacia and other strains. World J Microbiol Biotechnol 19:117–121. doi:10.1023/A:1023284723636

    Article  CAS  Google Scholar 

  • Schroeder ED (1977) Water and wastewater treatment. McGraw Hill, Tokyo, International Student Edition

    Google Scholar 

  • Seki H, Suzuki A (1995) Adsorption of heavy metal ions onto insolubilized humic acid. J Colloid Interface Sci 171:490–494. doi:10.1006/jcis.1995.1207

    Article  CAS  Google Scholar 

  • Sharma S, Pradhan K, Satya S, Vasudevan P (2005) Potentiality of earthworms for waste management and in other uses – a review. J Am Sci 1:4–16

    Google Scholar 

  • Sharma P, Kumari P, Srivastava MM, Srivastava S (2006) Removal of cadmium from aqueous system by shelled Moringa oleifera Lam. Seed powder. Bioresour Technol 97:299–305. doi:10.1016/j.biortech.2005.02.034

    Article  CAS  Google Scholar 

  • Shen W, Chen S, Shi S, Li X, Zhang X, Hu W, Wang H (2009) Adsorption of Cu(II) and Pb(II) onto diethylenetriamine–bacterial cellulose. Carbohydr Polym 75:110–114. doi:10.1016/j.carbpol.2008.07.006

    Article  CAS  Google Scholar 

  • Singh KK, Rastogi R, Hasan SH (2005) Removal of cadmium from wastewater using agricultural waste ‘rice polish’. J Hazard Mater 121:51–58. doi:10.1016/j.jhazmat.2004.11.002

    Article  CAS  Google Scholar 

  • Singh KK, Singh AK, Hasan SH (2006) Low cost bio–sorbent ‘wheat bran’ for the removal of cadmium from wastewater: kinetic and equilibrium studies. Bioresour Technol 97:994–1001. doi:10.1016/j.biortech.2005.04.043

    Article  CAS  Google Scholar 

  • Singh R, Sharma RR, Kumar S, Gupta RK, Patil RT (2008) Vermicompost substitution influences growth, physiological disorders, fruit yield and quality of strawberry (Fragaria x ananassa Duch.). Bioresour Technol 99:8507. doi:10.1016/j.biortech.2008.03.034

    Article  CAS  Google Scholar 

  • Singh RS, Singh VK, Tiwari PN, Singh JK, Sharma YC (2009) Biosorption studies of nickel on Parthenium hysterophorous ash. Environ Technol 30:355–364. doi:10.1080/09593330902753156

    Article  CAS  Google Scholar 

  • Şölener M, Tunali S, Safa Özcan A, Özcan A, Gedikbey T (2008) Adsorption characteristics of lead(II) ions onto the clay/poly(methoxyethyl)acrylamide (PMEA) composite from aqueous solutions. Desalination 223:308–322. doi:10.1016/j.desal.2007.01.221

    Article  CAS  Google Scholar 

  • Spark KM, Wells JD, Johnson BB (1997) The interaction of a humic acid with heavy metals. Aust J Soil Res 35:89–102

    Article  CAS  Google Scholar 

  • Sprynskyy M, Buszewski B, Terzyk AP, Namieśnik J (2006) Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. J Colloid Interface Sci 304:21–28. doi:10.1016/j.jcis.2006.07.068

    Article  CAS  Google Scholar 

  • Srivastava P, Singh P, Angove M (2005) Competitive adsorption behavior of heavy metals on kaolinite. J Colloid Interface Sci 290:28–38. doi:10.1016/j.jcis.2005.04.036

    Article  CAS  Google Scholar 

  • Srivastava VC, Mall ID, Mishra IM (2006) Characterization of mesoporous rice husk ash (RHA) and adsorption kinetics of metal ions from aqueous solution onto RHA. J Hazard Mater 134:257–267. doi:10.1016/j.jhazmat.2005.11.052

    Article  CAS  Google Scholar 

  • Stanley LC, Ogden KL (2003) Biosorption of copper (II) from chemical mechanical planarization wastewaters. J Environ Manag 69:289–297. doi:10.1016/j.jenvman.2003.09.009

    Article  Google Scholar 

  • Steven JD, Davies LJ, Stanley EK, Abbott RA, Ihnat M, Bidstrup L, Jaworski JF (1976) Effects of chromium in the Canadian environment. Nat. Res. Coun. Canada, NRCC No. 15017. Available from Publications, NRCC/CNRC, Ottawa, K1A OR6, p 168

    Google Scholar 

  • Stylianou MA, Inglezakis VJ, Moustakas KG, Malamis SPh, Loizidou MD (2007) Removal of Cu(II) in fixed bed and batch reactors using natural zeolite and exfoliated vermiculite as adsorbents. Desalination 215:133–142. doi:10.1016/j.desal.2006.10.031

    Article  CAS  Google Scholar 

  • Sud D, Mahajan G, Kaur MP (2008) Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions – a review. Bioresour Technol 99:6017–6027. doi:10.1016/j.biortech.2007.11.064

    Article  CAS  Google Scholar 

  • Suhasini IP, Sriram G, Asolekar SR, Sureshkumar GK (1999) Nickel biosorption from aqueous systems: studies on single and multimetal equilibria, kinetics, and recovery. Sep Sci Technol 34:2761–2779. doi:10.1081/SS-100100803

    Article  CAS  Google Scholar 

  • Sumathi KMS, Mahimairaja S, Naidu R (2005) Use of low–cost biological waste and vermiculite for removal of chromium from tannery effluent. Bioresour Technol 96:309–316. doi:10.1016/j.biortech.2004.04.015

    Article  CAS  Google Scholar 

  • Sun Y, Paige CR, Snodgrass WJ (1996) The effect of cadmium on the transformation of ferrihydrite into crystalline products at pH 8. Water Air Soil Pollut 91:307–325

    Article  CAS  Google Scholar 

  • Sunderman F Jr, Dingle B, Hopfer SM, Swift T (1988) Acute nickel toxicity in electroplating workers who accidentally ingested a solution of nickel sulfate and nickel chloride. Am J Ind Med 14:257–266

    Article  Google Scholar 

  • Suthar S, Singh S (2008) Vermicomposting of domestic waste by using two epigeic earthworms (Perionyx excavatus and Perionyx sansibaricus). Int J Environ Sci Technol 5:99–106

    Article  CAS  Google Scholar 

  • Tabatabai A, Li S (2000) Dietary fiber and type 2 diabetes. Clin Excell Nurse Pract 4:272–276

    CAS  Google Scholar 

  • Taiwo LB, Oso BA (2004) Influence of composting techniques on microbial succession, temperature and pH in a composting municipal solid waste. Afr J Biotechnol 3:239–243

    CAS  Google Scholar 

  • Tandon SK, Saxena DK, Gaur JS, Chandra SV (1978) Comparative toxicity of trivalent and hexavalent chromium. Alterations in blood and liver. Environ Res 15:90–99

    Article  CAS  Google Scholar 

  • Thanabalasingam P, Pickering WF (1986) Arsenic sorption by humic acids. Environ Pollut B Chem Phys 12:233–246

    Article  CAS  Google Scholar 

  • Tognetti C, Laos F, Mazzarino MJ, Hernandez MT (2005) Composting vs vermicomposting: a comparison of end product quality. Compost Sci Util 13:6–13

    Article  Google Scholar 

  • Tsezos M, Remoudaki E, Angelatou V (1995) A systematic study on equilibrium and kinetics of biosorptive accumulation. The case of Ag and Ni. Int Biodeterior Biodegrad 129–153. doi:10.1016/0964-8305(95)00049-B

  • Tunali S, Kiran I, Akar T (2005) Chromium(VI) biosorption characteristics of Neurospora crassa fungal biomass. Miner Eng 18:681–689. doi:10.1016/j.mineng.2004.11.002

    Article  CAS  Google Scholar 

  • Tyler G, Pahlsson AM, Bengtsson G, Baath E, Tranvik L (1989) Heavy metal ecology and terrestrial plants, microorganisms and invertebrates: a review. Water Air Soil Pollut 47:189–215. doi:10.1007/BF00279327

    Article  CAS  Google Scholar 

  • Ulmanu M, Marañón E, Fernández Y, Castrillón L, Anger I, Dumitriu D (2003) Removal of copper and cadmium ions from diluted aqueous solutions by low cost and waste material adsorbents. Water Air Soil Pollut 142:357–373. doi:10.1023/A:1022084721990

    Article  CAS  Google Scholar 

  • Urdaneta C, Parra L–MC, Matute S, Garaboto MA, Barros H, Vázquez C (2008) Evaluation of vermicompost as bioadsorbent substrate of Pb, Ni, V and Cr for waste waters remediation using total reflection X–ray fluorescence. Spectrochim Acta Part B 63:1455–1460. doi:10.1016/j.sab.2008.10.004

    Article  CAS  Google Scholar 

  • USAF (1990) Nickel. In: Harry G (ed) Installation restoration program toxicology guide, vol 5. Armstrong Aerospace Medical Research Laboratory, Wright Patterson

    Google Scholar 

  • Vegliò F, Beolchini F, Prisciandaro M (2003) Sorption of copper by olive mill residues. Water Res 37:895–4903. doi:10.1016/S0043-1354(03)00414-7

    Article  CAS  Google Scholar 

  • Vieira MGA, Oisiovici RM, Gimenes ML, Silva MGC (2008) Biosorption of chromium(VI) using a Sargassum sp. Packed–bed column. Bioresour Technol 99:3094–3099. doi:10.1016/j.biortech.2007.05.071

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Yun Y–S (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291. doi:10.1016/j.biotechadv.2008.02.002

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Jegan J, Palanivelu K, Velan M (2005a) Biosorption of cobalt(II) and nickel(II) by seaweeds: batch and column studies. Sep Purif Technol 44:53–59. doi:10.1016/j.seppur.2004.12.003

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Jegan J, Palanivelu K, Velan M (2005b) Biosorption of copper, cobalt and nickel by marine green alga Ulva reticulata in a packed column. Chemosphere 60:419–426. doi:10.1016/j.chemosphere.2004.12.016

    Article  CAS  Google Scholar 

  • Vilar VJP, Botelho CMS, Boaventura RAR (2007) Copper desorption from Gelidium algal biomass. Water Res 41:1569–1579. doi:10.1016/j.watres.2006.12.031

    Article  CAS  Google Scholar 

  • Vilar VJP, Botelho CMS, Boaventura RAR (2008) Copper removal by algae Gelidium, agar extraction algal waste and granulated algal waste: kinetics and equilibrium. Bioresour Technol 99:750–762. doi:10.1016/j.biortech.2007.01.042

    Article  CAS  Google Scholar 

  • Vinkler P, Lakatos B, Meisel J (1976) Infrared spectroscopic investigations of humic substances and their metal complexes. Geoderma 15:231–242

    Article  CAS  Google Scholar 

  • Volesky B (2001) Detoxification of metal–bearing effluents: biosorption for the next century. Hydrometall 59:203–216. doi:10.1016/S0304-386X(00)00160-2

    Article  CAS  Google Scholar 

  • Volesky B, Schiewer S (1999) Biosorption, Metals. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation. Wiley, New York, pp 433–453

    Google Scholar 

  • Wang LK, Hung YT, Hung Li K (2007) Vermicomposting process. Biosolids Treat Process 6:689–704

    Article  Google Scholar 

  • Wei YL, Lee YC, Hsieh HF (2005) XANES study of Cr sorbed by a kitchen waste compost from water. Chemosphere 61:1051–1060. doi:10.1016/j.chemosphere.2005.03.037

    Article  CAS  Google Scholar 

  • Wong JPK, Wong YS, Ta NFY (2000) Nickel biosorption by two chlorella species, C. Vulgaris (a commercial species) and C. Miniata (a local isolate). Bioresour Technol 73:133–137. doi:10.1016/S0960-8524(99)00175-3

    Article  CAS  Google Scholar 

  • Xi B, Wei Z, Hongliang L (2005) Dynamic simulation for domestic solid waste composting process. J Am Sci 1:34–45

    Google Scholar 

  • Xu Y, Zhao D (2007) Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Res 41:2101–2108. doi:10.1016/j.watres.2007.02.037

    Article  CAS  Google Scholar 

  • Yahaya YA, Don MM, Bhatia S (2009) Biosorption of copper (II) onto immobilized cells of Pycnoporus sanguineus from aqueous solution: equilibrium and kinetic studies. J Hazard Mater 161:189–195. doi:10.1016/j.jhazmat.2008.03.104

    Article  CAS  Google Scholar 

  • Yin P, Yu Q, Jin B, Ling Z (1999) Biosorption removal of cadmium from aqueous solution by using pretreated fungal biomass cultured from starch wastewater. Water Res 33:1960–1963. doi:10.1016/S0043-1354(98)00400-X

    Article  CAS  Google Scholar 

  • Zafar MN, Nadeem R, Hanif MA (2007) Biosorption of nickel from protonated rice bran. J Hazard Mater 143:478–485. doi:10.1016/j.jhazmat.2006.09.055

    Article  CAS  Google Scholar 

  • Zaller JG (2006) Foliar spraying of vermicompost extracts: effects on fruit quality and indications of late–blight suppression of field–grown tomatoes. Biol Agric Hortic 24:165–180

    Article  Google Scholar 

Download references

Acknowledgements

We wish to express our gratitude and appreciation to all the researchers whose valuable data, research findings and discussions as reported in their respective publications and reports, have been of considerable significance in adding substance to this review on survey of recent developments. We are grateful to our other colleagues and the anonymous reviewers whose criticisms have benefited the manuscript. Our sincere thanks to Brian Phelps (http://www.phelpstek.com/) for having been gracious enough to provide us with the structure of humic acid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ackmez Mudhoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mudhoo, A., Garg, V.K., Wang, S. (2012). Heavy Metals: Toxicity and Removal by Biosorption. In: Lichtfouse, E., Schwarzbauer, J., Robert, D. (eds) Environmental Chemistry for a Sustainable World. Environmental Chemistry for a Sustainable World. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2439-6_10

Download citation

Publish with us

Policies and ethics