Raman Scattering for Weakened Bonds in the Intermediate States of Impurity Centres

  • Imbi TehverEmail author
  • G. Benedek
  • V. Boltrushko
  • V. Hizhnyakov
  • T. Vaikjärv
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 23)


A theory of the Raman scattering in resonance with an electronic transition causing a strong softening of vibrations is proposed. In this case the potential surface of the excited state has a flat minimum or maximum in the configurational coordinate space. Two cases of the vibronic coupling are considered: (1) the coupling with a single coordinate and (2) the coupling with the phonon continuum. To describe the Raman scattering the Fourier-amplitude method is applied. In the first case the calculations are performed for the pseudo-Jahn-Teller effect in the excited state. In the second case, despite a strong mixing of phonons, the equations for the Raman Fourier amplitudes can be factorized and solved analytically. It is predicted that the second-order Raman scattering will be strongly enhanced. Moreover, the second-order Raman scattering is also enhanced as compared to the first-order scattering. The Raman excitation profiles show a structure caused by the Airy oscillations. The theory is applied to the triplet-triplet optical transition in Na2 molecule confined at the surface of a 4He droplet.


Raman Scattering Excited Electronic State Fourier Amplitude Vibronic Coupling Vibronic Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research was supported by the target-financed grant TLOFY0145 and ESF grant GLOFY7741.


  1. 1.
    Long DA (2002) The Raman effect: A unified treatment of the theory of Raman scattering by molecules. Wiley, West SussexGoogle Scholar
  2. 2.
    Page JB (1991) In: Cardona M, Güntherodt G (eds) Light scattering in solids VI. Springer, Berlin/Heidelberg/New York, p 17Google Scholar
  3. 3.
    Hizhnyakov V, Tehver I (1967) Phys State Solid 21:755; Hizhnyakov V, Tehver I (1997) J Raman Spectrosc 27:403Google Scholar
  4. 4.
    Champion PM, Albrecht AC (1982) Annu Rev Phys Chem 33:353CrossRefGoogle Scholar
  5. 5.
    Siebrand W, Zgierski MZ (1979). In: Excited states, vol 4. Academic, p 1Google Scholar
  6. 6.
    Clark RJH, Stewart B (1979) Struct Bond 36:1CrossRefGoogle Scholar
  7. 7.
    Desiderio RA, Hudson BS (1979) Chem Phys Lett 61:445CrossRefGoogle Scholar
  8. 8.
    Pfeiffer M, Lau A, Werncke W (1984) J Raman Spectrosc 15:20CrossRefGoogle Scholar
  9. 9.
    Stienkemeier F, Ernst WE, Higgins J, Scoles G (1995) J Chem Phys 102:615CrossRefGoogle Scholar
  10. 10.
    Stienkemeier F, Higgins J, Ernst WE, Scoles G (1995) Phys Rev Lett 74:3592CrossRefGoogle Scholar
  11. 11.
    Kikas J, Suisalu A, Zazubovich V, Vois P (1996) J Chem Phys 104:4434CrossRefGoogle Scholar
  12. 12.
    Hizhnyakov V, Benedek G, Tehver I, Boltrushko V (2006) J Non Cryst Solids 352:2558CrossRefGoogle Scholar
  13. 13.
    Boltrushko V, Holmar S, Tehver I, Hizhnyakov V (2007) J Mol Struct 838:164CrossRefGoogle Scholar
  14. 14.
    Karpov G, Parshin DA (1983) JETP Lett 38:648; (1985) Sov Phys JETP 61:1308Google Scholar
  15. 15.
    Krivoglaz MA (1985) Sov Phys JETP 61:1284Google Scholar
  16. 16.
    Englman R (1972) The Jahn-Teller effect in molecules and crystals. Wiley-Interscience, New YorkGoogle Scholar
  17. 17.
    Fischer G (1984) Vibronic coupling. Academic, San DiegoGoogle Scholar
  18. 18.
    Zgierski MZ, Pawlikowski M (1979) J Chem Phys 70:3444CrossRefGoogle Scholar
  19. 19.
    Bersuker IB, Polinger VZ (1989) Vibronic interactions in molecules and crystals. Springer, BerlinCrossRefGoogle Scholar
  20. 20.
    Bersuker IB (2006) The Jahn–Teller effect. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  21. 21.
    Luthi B (2004) Physical acoustics in the solid state. Springer, BerlinGoogle Scholar
  22. 22.
    Polinger VZ, Bersuker IB (1979) Phys State Solidi (b) 95:403CrossRefGoogle Scholar
  23. 23.
    Rosenfeld YuB, Vaisleib AV (1984) Sov Phys JETP 86:1059Google Scholar
  24. 24.
    Gudkov VV, Lonchakov AT, Sokolov VI, Zhevstovskikh IV, Surikov VT (2008) Phys Rev B 77:155210CrossRefGoogle Scholar
  25. 25.
    Gudkov VV, Lonchakov AT, Zhevstovskikh IV, Sokolov VI, Surikov VT (2009) Low Temp Phys 35:76CrossRefGoogle Scholar
  26. 26.
    Fulton R, Gouterman M (1964) J Chem Phys 35:1059; (1964) 41:2280Google Scholar
  27. 27.
    Hizhnyakov V, Tehver I, Benedek G (2009) Eur Phys J B 70:507CrossRefGoogle Scholar
  28. 28.
    Hizhnyakov V, Benedek G (2008) Chem Phys Lett 460:447CrossRefGoogle Scholar
  29. 29.
    Hizhnyakov V, Tehver I, Boltrushko V, Benedek G (2010) Eur Phys J B 75:187CrossRefGoogle Scholar
  30. 30.
    Hizhnyakov V (1986) J Phys C Solid State Phys 20:6087Google Scholar
  31. 31.
    Hizhnyakov V, Tehver I (1996) J Raman Spectrosc 27:469CrossRefGoogle Scholar
  32. 32.
    Loorits V (1979) Projavlenije rezonansa Fermi v opticheskih spektrah psevdo-effekta Jana-Tellera (Akademija Nauk ESSP, Otdelenije fiziko-matematicheskih nauk, Preprint F-11, in Russian)Google Scholar
  33. 33.
    Pae K (2008) Electronic transitions in symmetric systems of strong vibronic coupling. Bachelor thesis, Tartu;

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Imbi Tehver
    • 1
    Email author
  • G. Benedek
    • 2
    • 3
  • V. Boltrushko
    • 1
  • V. Hizhnyakov
    • 1
  • T. Vaikjärv
    • 1
  1. 1.Institute of PhysicsUniversity of TartuTartuEstonia
  2. 2.Donostia International Physics CenterSan SebastianSpain
  3. 3.Department of Materials ScienceUniversity of Milano-BicoccaMilanItaly

Personalised recommendations