Skip to main content

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 383))

Abstract

In science, an experiment is usually a way of investigating “cause-and-effect” processes in Nature by creating a special situation where we can vary the physical conditions and see how this affects the outcome of the process. Obviously, in large-scale physics such operations are quite limited and an experiment rather means a carefully planned set of observations directed to test a theoretical prediction. Modern physics views the observable universe as a place where the physical laws may be studied on the largest available scales. The cosmic laboratory has many features which complicate the work, including non-locality of observations and selection effects always putting their finger on observed relations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Crawford (1995) defended the possibility that the deviation is due to a static cosmology. In this case there would be no evolution and no power-size anticorrelation so the selection effect discussed by Nilsson et al. (1993) would be of minor importance.

  2. 2.

    The vacuum and “antigravitating” dark energy have a quantum nature. At present they enter general relativity on a phenomenological level only. As parts of any new quantum gravity theory these entities will likely affect our understanding of dark matter and large-scale structure formation.

References

  • Aguirre, A.N.: Dust versus cosmic acceleration. Astrophys. J. 512, L19 (1999)

    Article  ADS  Google Scholar 

  • Amanullah, R., Lidman, C., Rubin, D., et al.: Spectra and HST light curves of six type Ia supernovea at 0.511<z<1.12 and the Union2 compilation. Astrophys. J. 716, 712 (2010)

    Article  ADS  Google Scholar 

  • Arp, H.C.: A very small, condensed galaxy. Astrophys. J. 142, 402 (1965)

    Article  ADS  Google Scholar 

  • Bahcall, J., Wolf, R.A.: Fine-structure transitions. Astrophys. J. 152, 701 (1968)

    Article  ADS  Google Scholar 

  • Baryshev, Yu.: Modern state of observational cosmology. VINTI, Itogi Nauki i Techniki, Series Classical Field Theory and Gravity Theory, vol. 4: Gravitation and Cosmology, p. 89 (1992b) (in Russian)

    Google Scholar 

  • Baryshev, Yu.V., Teerikorpi, P.: Kinematical models of double radio sources and the unified scheme I. Theoretical probability distributions of observable quantities. Astron. Astrophys. 295, 11 (1995)

    ADS  Google Scholar 

  • Benetti, S., Cappellaro, E., Mazzali, P.A., et al.: The diversity of Type Ia supernovae: Evidence for systematics? Astrophys. J. 623, 1011 (2005)

    Article  ADS  Google Scholar 

  • Bernstein, R.A., Freedman, W.L., Madore, B.F.: The first detection of the extragalactic background light at 3000, 5500, and 8000 Å. Astrophys. J. 571, 85 (2002)

    Article  ADS  Google Scholar 

  • Bernstein, R.A., Freedman, W.L., Madore, B.F.: Corrections of errors in “The first detection of the extragalactic background light at 3000, 5500, and 8000 Å”. Astrophys. J. 632, 713 (2005)

    Article  ADS  Google Scholar 

  • Binggeli, B., Tarenghi, M., Sandage, A.: The abundance and morphological segregation of dwarf galaxies in the field. Astron. Astrophys. 228, 42 (1990)

    ADS  Google Scholar 

  • Blondin, S., Davis, T.M., Krisciunas, K.: Time dilation in Type Ia supernova spectra at high redshift. Astrophys. J. 682, 724 (2008)

    Article  ADS  Google Scholar 

  • Bouwens, R.J., Illingworth, G.D., Blakeslee, J.P., Broadhurst, T.J., Franx, M.: Galaxy size evolution at high redshift and surface brightness selection effects: Constraints from the Hubble Ultra Deep Field. Astrophys. J. 611, L1 (2004)

    Article  ADS  Google Scholar 

  • Bouwens, R.J., Illingworth, G.D., Labbe, I., et al.: A candidate redshift z≈10 galaxy and rapid changes in that population at an age of 500 Myr. Nature 469, 504 (2011)

    Article  ADS  Google Scholar 

  • Branch, D.: High-velocity matter in a classical Type I supernova: The demise of Type Ia homogeneity. Astrophys. J. 316, L81 (1987)

    Article  ADS  Google Scholar 

  • Bruzual, G., Charlot, S.: Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000 (2003)

    Article  ADS  Google Scholar 

  • Buchalter, A., Helfand, D.J., Becker, R.H., White, R.L.: Constraining Ω0 with the angular size–redshift relation of double-lobed quasars in the FIRST survey. Astrophys. J. 494, 503 (1998)

    Article  ADS  Google Scholar 

  • Célérier, M.-N., Bolejko, K., Krasiński, A.: A (giant) void is not mandatory to explain away dark energy with a Lemaître-Tolman model. Astron. Astrophys. 518, A21 (2010)

    Article  Google Scholar 

  • Clifton, T., Ferreira, P.G., Padilla, A., Skordis, C.: Modified gravity and cosmology (2011). arXiv:1106.2476 [astro-ph]

  • Cohen, S.E., Windhorst, R.A., Odewahn, S.C., Chiarenza, C.A., Driver, S.P.: The Hubble Space Telescope WFPC2 B-band parallel survey: A study of galaxy morphology for magnitudes 18≤B≤27. Astron. J. 125, 1762 (2003)

    Article  ADS  Google Scholar 

  • Crawford, D.F.: Angular size in a static universe. Astrophys. J. 440, 446 (1995)

    Article  ADS  Google Scholar 

  • Disney, M.J.: Visibility of galaxies. Nature 263, 573 (1976)

    Article  ADS  Google Scholar 

  • Djorgovski, S., Spinrad, H.: Towards the application of a metric size function in galactic evolution and cosmology. Astrophys. J. 251, 417 (1981)

    Article  ADS  Google Scholar 

  • Fabbri, R., Melchiorri, F., Natale, V.: The Sunyaev-Zeldovich effect in the millimetric region. Astrophys. Space Sci. 59, 223 (1978)

    Article  ADS  Google Scholar 

  • Fall, S.M., Efstathiou, G.: Formation and rotation of disc galaxies with haloes. Mon. Not. R. Astron. Soc. 193, 189 (1980)

    ADS  Google Scholar 

  • Ferguson, H.C., Dickinson, M., Giavalisco, M., et al.: The size evolution of high-redshift galaxies. Astrophys. J. 600, L107 (2004)

    Article  ADS  Google Scholar 

  • Gabrielli, A., Sylos Labini, F., Joyce, M., Pietronero, L.: Statistical Physics for Cosmic Structures. Springer, Berlin (2005)

    Google Scholar 

  • Gardner, J.P., Cowie, L.L., Wainscoat, R.J.: Galaxy number counts from K=10 to K=23. Astrophys. J. 415, L9 (1993)

    Article  ADS  Google Scholar 

  • Goldhaber, G., Groom, D.E., Kim, A., et al.: Timescale stretch parameterization of Type Ia supernova B-band light curves. Astrophys. J. 558, 359 (2001)

    Article  ADS  Google Scholar 

  • Gudmundsson, E.H., Björnsson, G.: Dark energy and the observable universe. Astrophys. J. 565, 1 (2002)

    Article  ADS  Google Scholar 

  • Hamuy, M., Phillips, M.M., Maza, J., Suntzeff, N.B., Schommer, R.A., Aviles, R.: Hubble diagram of distant type IA supernovae. Astron. J. 109, 1 (1995)

    Article  ADS  Google Scholar 

  • Hawkins, M.R.S.: On time dilation in quasar light curves. Mon. Not. R. Astron. Soc. 405, 1940 (2010)

    ADS  Google Scholar 

  • Horellou, C., Nord, M., Johansson, D., Lévy, A.: Probing the cosmic microwave background temperature using the Sunyaev-Zeldovich effect. Astron. Astrophys. 441, 435 (2005)

    Article  ADS  Google Scholar 

  • Howell, A., Sullivan, M., Conley, A., Carlberg, R.: Predicted and observed evolution in the mean properties of Type Ia supernovae with redshift. Astrophys. J. 667, L37 (2007)

    Article  ADS  Google Scholar 

  • Hoyle, F.: The relation of radio astronomy to cosmology. In: Bracewell, R.N. (ed.) Radio Astronomy. IAU Symp., vol. 9, p. 529 (1959)

    Google Scholar 

  • Hoyle, F., Fowler, W.: Nucleosynthesis in supernovae. Astrophys. J. 132, 565 (1960)

    Article  ADS  Google Scholar 

  • Hu, W., Dodelson, S.: Cosmic microwave background anisotropies. Annu. Rev. Astron. Astrophys. 40, 171 (2002)

    Article  ADS  Google Scholar 

  • Hubble, E., Tolman, R.: Two methods of investigating the nature of the nebular red-shift. Astrophys. J. 82, 302 (1935)

    Article  ADS  MATH  Google Scholar 

  • Impey, C., Bothun, G.: Low surface brightness galaxies. Annu. Rev. Astron. Astrophys. 35, 267 (1997)

    Article  ADS  Google Scholar 

  • Jaakkola, T.: Equilibrium cosmology. In: Arp, H.C., Keys, C.R., Rudnicki, K. (eds.) Progress in New Cosmologies: Beyond the Big Bang, p. 111. Plenum, New York (1993)

    Google Scholar 

  • Jackson, J.C., Dogdson, M.: Deceleration without dark matter. Mon. Not. R. Astron. Soc. 285, 806 (1997)

    ADS  Google Scholar 

  • Jackson, J.C., Jannetta, A.L.: Legacy data and cosmological constraints from the angular-size/redshift relation for ultra-compact radio sources. J. Cosmol. Astropart. Phys. 0611, 002 (2006)

    Article  ADS  Google Scholar 

  • Kapahi, V.K.: The angular size-redshift relation as a cosmological tool. In: Observational Cosmology. IAU Symp, vol. 124, p. 251. Riedel, Dordrecht (1987)

    Chapter  Google Scholar 

  • Kellermann, K.I.: The cosmological deceleration parameter estimated from the angular-size/redshift relation for compact radio sources. Nature 361, 134 (1993)

    Article  ADS  Google Scholar 

  • Kowalski, M., Rubin, D., Aldering, G., et al.: Improved cosmological constraints from new, old, and combined supernova data sets. Astrophys. J. 686, 749 (2008)

    Article  ADS  Google Scholar 

  • Kraan-Korteweg, R.C., Tammann, G.: A catalogue of galaxies within 10 Mpc. Astron. Nachr. 300, 181 (1979)

    Article  ADS  Google Scholar 

  • LaViolette, P.A.: Is the universe really expanding? Astrophys. J. 301, 544 (1986)

    Article  ADS  Google Scholar 

  • Leibundgut, B.: Cosmological implications from observations of Type Ia supernovae. Annu. Rev. Astron. Astrophys. 39, 67 (2001)

    Article  ADS  Google Scholar 

  • Lilly, S.J., Cowie, L.L., Gardner, J.P.: A deep imaging and spectroscopic survey of faint galaxies. Astrophys. J. 369, 79 (1991)

    Article  ADS  Google Scholar 

  • Liske, J., Grazian, A., Vanzella, E., et al.: Cosmic dynamics in the era of extremely large telescopes. Mon. Not. R. Astron. Soc. 386, 1192 (2008)

    Article  ADS  Google Scholar 

  • Loeb, A.: Direct measurement of cosmological parameters from the cosmic deceleration of extragalactic objects. Astrophys. J. 499, L111 (1998)

    Article  ADS  Google Scholar 

  • LoSecco, J., Mathews, G., Wang, Y.: Prospects for constraining cosmology with the extragalactic cosmic microwave background temperature. Phys. Rev. D 64, 123002 (2001)

    Article  ADS  Google Scholar 

  • Lubin, L., Sandage, A.: The Tolman surface brightness test for the reality of the expansion. IV. Astron. J. 122, 1084 (2001)

    Article  ADS  Google Scholar 

  • Luzzi, G., Shimon, M., Lamagna, L., et al.: Redshift dependence of the cosmic microwave background temperature from Sunyaev-Zeldovich measurements. Astrophys. J. 705, 1122 (2009)

    Article  ADS  Google Scholar 

  • Maeda, K., Benetti, S., Stritzinger, M., et al.: An asymmetric explosion as the origin of spectral evolution diversity in type Ia supernovae. Nature 466, 82 (2010)

    Article  ADS  Google Scholar 

  • Mattila, K.: Observations of the extragalactic background light. In: The Galactic and Extragalactic Background Radiation, p. 257. Kluwer Academic, Dordrecht (1990)

    Chapter  Google Scholar 

  • Mattila, K.: Has the optical extragalactic background light been detected? Astrophys. J. 591, 119 (2003)

    Article  ADS  Google Scholar 

  • Mattsson, T.: Dark energy as a mirage. Gen. Relativ. Gravit. 42, 567 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • McGaugh, S.: A possible local counterpart to the excess population of faint galaxies. Nature 367, 538 (1994)

    Article  ADS  Google Scholar 

  • Ménard, B., Kilbinger, M., Scranton, R.: On the impact of intergalactic dust on cosmology with Type Ia supernovae. Mon. Not. R. Astron. Soc. 406, 1815 (2010)

    ADS  Google Scholar 

  • Minchin, R.F., Disney, M.J., Parker, Q.A., et al.: The cosmological significance of low surface brightness galaxies found in a deep blind neutral hydrogen survey. Mon. Not. R. Astron. Soc. 355, 1303 (2004)

    Article  ADS  Google Scholar 

  • Molaro, P., Levshakov, S., et al.: The cosmic microwave background radiation temperature at z=3.025 toward QSO 0347-3819. Astron. Astrophys. 381, L64 (2002)

    Article  ADS  Google Scholar 

  • Moles, M., Campos, A., Kjaergaard, P., Fasano, G., Bettoni, D.: On the use of scaling relations for the Tolman test. Astrophys. J. 495, L31 (1998)

    Article  ADS  Google Scholar 

  • Nabokov, N.V., Baryshev, Yu.V.: Classical cosmological tests for galaxies of the Hubble ultra deep field. Astrophys. Bull. 63, 244 (2008a)

    Article  ADS  Google Scholar 

  • Narlikar, J.: Introduction to Cosmology, 2nd edn. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  • Nilsson, K., Valtonen, M., Kotilainen, J., Jaakkola, T.: On the redshift–apparent size diagram of double radio sources. Astrophys. J. 413, 453 (1993)

    Article  ADS  Google Scholar 

  • Padovani, P., Urry, C.M.: Luminosity functions, relativistic beaming and unified theories of high-luminosity radio sources. Astrophys. J. 387, 449 (1992)

    Article  ADS  Google Scholar 

  • Peebles, P.J.E.: Principles of Physical Cosmology. Princeton Univ. Press, Princeton (1993)

    Google Scholar 

  • Perlmutter, S., Aldering, G., Goldhaber, G., et al.: Measurements of Ω and Λ from 42 high–redshift supernovae. Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  • Poggianti, B.: K and evolutionary corrections from UV to IR. Astron. Astrophys. Suppl. Ser. 122, 399 (1997)

    Article  ADS  Google Scholar 

  • Refsdal, S., Surdej, J.: Gravitational lenses. Rep. Prog. Phys. 56, 117 (1994)

    Article  ADS  Google Scholar 

  • Rephaeli, Y.: On the determination of the degree of cosmological Compton distortions and the temperature of the cosmic blackbody radiation. Astrophys. J. 241, 858 (1980)

    Article  ADS  Google Scholar 

  • Riess, A.G., Filippenko, A.V., Challis, P., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  • Riess, A.G., Strolger, L.-G., Tonry, J., et al.: Type Ia supernova discoveries at z>1 from the HST: Evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 607, 665 (2004)

    Article  ADS  Google Scholar 

  • Robaina, A.R., Cepa, J.: Redshift-distance relations from Type Ia supernova observations. New constraints on grey dust models. Astron. Astrophys. 464, 465 (2007)

    Article  ADS  Google Scholar 

  • Rosenbaum, S.D., Bomans, D.J.: The environment of low surface brightness galaxies. Astron. Astrophys. 422, L5 (2004)

    Article  ADS  Google Scholar 

  • Rust, B.W.: Use of supernovae light curves for testing the expansion hypothesis and other cosmological relations. Ph.D. Thesis, Oak Ridge National Lab., TN (1974)

    Google Scholar 

  • Sandage, A.: The ability of the 200-inch telescope to discriminate between selected world models. Astrophys. J. 133, 355 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  • Sandage, A.: The change of redshift and apparent luminosity of galaxies due to the deceleration of the expanding universes. Astrophys. J. 136, 319 (1962)

    Article  ADS  Google Scholar 

  • Sandage, A.: Observational tests of world models. Annu. Rev. Astron. Astrophys. 26, 561 (1988a)

    Article  ADS  Google Scholar 

  • Sandage, A.: Astronomical problems for the next three decades. In: Mamaso, A., Munch, G. (eds.) Key Problems in Astronomy and Astrophysics. Cambridge University Press, Cambridge (1995a)

    Google Scholar 

  • Sandage, A.: Practical cosmology: Inventing the past. In: Binggeli, Buser, R. (eds.) The Deep Universe, pp. 1–232. Springer, Berlin (1995b)

    Google Scholar 

  • Sandage, A.: The Tolman surface brightness test for the reality of the expansion. V. Provenance of the test and a new representation of the data for three remote Hubble space telescope galaxy clusters. Astron. J. 139, 728 (2010)

    Article  ADS  Google Scholar 

  • Sandage, A., Tammann, G.A., Federspiel, M.: Bias properties of extragalactic distance indicators. IV. Demonstration of the population incompleteness bias inherent in the Tully-Fisher method applied to clusters. Astrophys. J. 452, 1 (1995)

    Article  ADS  Google Scholar 

  • Sarkar, D., Amblard, A., Holz, D.E., Cooray, A.: Lensing and supernovae: Quantifying the bias on the dark energy equation of state. Astrophys. J. 678, 1 (2008)

    Article  ADS  Google Scholar 

  • Schneider, P., Ehlers, J., Falco, E.E.: Gravitational Lensing. Springer, Berlin (1992)

    Book  Google Scholar 

  • Spergel, D.N., Bean, R., Dore, O., et al.: Three-year Wilkinson microwave anisotropy probe (WMAP) observations: Implications for cosmology. Astrophys. J. Suppl. 170, 377 (2007)

    Article  ADS  Google Scholar 

  • Suntola, T.: The Dynamic Universe, Toward a Unified Picture of Physical Reality. Physics Foundations Society/CreateSpace, Seattle (2011)

    Google Scholar 

  • Sylos Labini, F., Montuori, M., Pietronero, L.: Scale-invariance of galaxy clustering. Phys. Rep. 293, 61 (1998)

    Article  ADS  Google Scholar 

  • Sylos Labini, F., Vasilyev, N.L., Baryshev, Yu.V.: Breaking the self-averaging properties of spatial galaxy fluctuations in the Sloan digital sky survey data release six. Astron. Astrophys. 508, 17 (2009b)

    Article  ADS  Google Scholar 

  • Taganov, I.N.: Conception of quantum cosmology. In: Baryshev, Yu., Taganov, I.N., Teerikorpi, P. (eds.) Practical Cosmology II, p. 68. Russian Geographical Society, St.Petersburg (2008)

    Google Scholar 

  • Tammann, G.A.: Precise determination of the distances of galaxies. In: Scientific Research with the Space Telescope. IAU Colloq., vol. 54, p. 263 (1979)

    Google Scholar 

  • Teerikorpi, P.: On the Hubble diagram for quasars as corrected for galactic absorption: Evidence for a separate class of the most luminous quasars. Astron. Astrophys. 98, 309 (1981b)

    ADS  Google Scholar 

  • Teerikorpi, P.: Note on the use of Type I supernovae as cosmic clocks. Acta Cosmol. 10, 21 (1981c)

    ADS  Google Scholar 

  • Teerikorpi, P.: Evidence for the class of the most luminous quasars II. Variability, polarization, and the gap in the M V distribution. Astron. Astrophys. 353, 77 (2000)

    ADS  Google Scholar 

  • Teerikorpi, P.: Evidence for the class of the most luminous quasars IV. Cosmological Malmquist bias and the Λ term. Astron. Astrophys. 399, 829 (2003)

    Article  ADS  Google Scholar 

  • Teerikorpi, P.: Influence of a generalized Eddington effect on galaxy counts. Astron. Astrophys. 424, 73 (2004)

    Article  ADS  Google Scholar 

  • Tolman, R.C.: On the estimation of distances in a curved universe with a non-static line element. Proc. Natl. Acad. Sci. USA 16, 511 (1930)

    Article  ADS  MATH  Google Scholar 

  • Tyson, J.A.: Deep CD survey: Galaxy luminosity and color evolution. Astron. J. 96, 1 (1988)

    Article  ADS  Google Scholar 

  • Wiik, K., Valtaoja, E.: The geometry of the universe from high resolution VLBI data of AGN shocks. Astron. Astrophys. 366, 1061 (2001)

    Article  ADS  Google Scholar 

  • Wilson, O.C.: Possible applications of supernovae to the study of the nebular redshifts. Astrophys. J. 90, 634 (1939)

    Article  ADS  Google Scholar 

  • Yoshii, Yu.: Detection and selection effects in observations of faint galaxies. Astrophys. J. 403, 552 (1993)

    Article  ADS  Google Scholar 

  • Yoshii, Yu., Takara, F.: Galactic evolution and cosmology: probing the cosmological deceleration parameter. Astrophys. J. 326, 1 (1988)

    Article  ADS  Google Scholar 

  • Zeldovich, Ya.B., Sunyaev, R.A.: The interaction of matter and radiation in a hot-model universe. Astrophys. Space Sci. 4, 301 (1969a)

    Article  ADS  Google Scholar 

  • Zeldovich, Ya.B., Sunyaev, R.A.: The interaction of matter and radiation in a hot-model universe. Astrophys. Space Sci. 7, 20 (1969b)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurij Baryshev .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Baryshev, Y., Teerikorpi, P. (2012). Classical Cosmological Tests. In: Fundamental Questions of Practical Cosmology. Astrophysics and Space Science Library, vol 383. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2379-5_8

Download citation

Publish with us

Policies and ethics