Skip to main content

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 383))

  • 1314 Accesses

Abstract

In early history of relativistic cosmology Alexander Friedmann (1923), in his book The world as space and time, modestly and wisely viewed cosmological models as “schematic and simplified, reminding one of the real world only to the extent that a dim reflection from a mirror of a schematic drawing of the cathedral of Cologne may be reminiscient of the cathedral itself”. Since those pristine days, cosmology has grown into an ambitious project dealing with applications of modern physics to the description of the largest observable universe. Here we first take a brief look at Newtonian cosmology and the first world model by Einstein and then describe the Friedmann model, the main theoretical tool in the hands of today’s cosmologists, which has developed into a many-component model containing ordinary matter, radiation, and, for the most part, dark unknown substances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this same study Arrhenius explains the absence of spiral nebulae close to the band of the Milky Way as due to the extinction of light by absorbing material. At that time and before, the odd distribution of nebulae was often regarded as evidence for their status as constituents of our Milky Way instead of being remote “Island Universes”.

  2. 2.

    The parameters of the partial equations of state (7.17) and the associated “effective” one-fluid parameter (7.16) are related by γ=(+β)/(α+1). For a coherent model with constant equation of state parameters for matter (β) and dark energy (w), the associated one-fluid model also has γ= constant in p=γε.

  3. 3.

    Because of the indirect, non-local measurement of distance, cosmological (metric) distances will always be tied to a cosmological model and tend have some unphysical aura around them (Samuel 2005).

  4. 4.

    One may find it difficult to remember the difference between the two kinds of horizon. Note that here a particle refers especially to a photon which we observe (and which left its origin sometimes in the past 0→t 0), while “events” refer to phenomena all over the universe (and which will be observed or not sometimes in the future t 0→∞).

  5. 5.

    Wolfgang Mattig has worked predominantly in the field of solar physics, and, as he mentioned in a letter to us, he never worked in extragalactic research and cosmology was his hobby. He derived the famous Mattig’s equation when he had to deliver a lecture on cosmology in connection with his doctoral thesis.

  6. 6.

    We discuss here Friedmann models, but note that any developed non-Friedmann world model must also have its own redshift-distance (zr) and redshift-time (zt) relations and also the rules which relate luminosity and angular size distances to the metric distance r, in order to be able to predict observable effects and test these predictions (Chap. 8).

  7. 7.

    A useful expression for the angular size distance for different dust-vacuum models was given by Demianski et al. (2003), accurate to 1.5% in the z range from 0 to 10.

References

  • Arrhenius, S.: Zur Frage nach der Unendlichkeit der Welt. Ark. Mat., Astron. Fys. 5(12) (1908)

    Google Scholar 

  • Baryshev, Yu., Teerikorpi, P.: Discovery of Cosmic Fractals. World Scientific, Singapore (2002), 408 pp (Polish translation: Poznawanie kosmicznego ladu Wszechswiat, WAM, Krakow, 2005; Italian translation: La scoperta dei frattali cosmici, Bollati Boringhieri, Torino, 2006)

    Book  Google Scholar 

  • Bondi, H.: Cosmology. Cambridge University Press, Cambridge (1952) (2nd edition 1968)

    MATH  Google Scholar 

  • Caldwell, R.R., Kamionkowski, M., Weinberg, N.N.: Phantom energy and cosmic doomsday. Phys. Rev. Lett. 91, 071301 (2003)

    Article  ADS  Google Scholar 

  • Carroll, S.M., Press, W.H., Turner, E.L.: The cosmological constant. Annu. Rev. Astron. Astrophys. 30, 499 (1992)

    Article  ADS  Google Scholar 

  • Charlier, C.: Wie ein Unendliche Welt aufgebaut sein kann. Ark. Mat. Astron. Fys. 4(24), 1 (1908)

    Google Scholar 

  • Charlier, C.: How an infinite world may be built up. Ark. Mat. Astron. Fys. 16(22), 1 (1922)

    Google Scholar 

  • Chernin, A.: The rest mass of primordial neutrinos, and gravitational instability in the hot universe. Sov. Astron. 25, 14 (1981)

    ADS  Google Scholar 

  • Demianski, M., de Ritis, R., Marino, A.A., Piedipalumbo, E.: Approximate angular diameter distance in a locally inhomogeneous universe with nonzero cosmological constant. Astron. Astrophys. 411, 33 (2003)

    Article  ADS  MATH  Google Scholar 

  • Eddington, A.S.: Space, Time and Gravitation. Cambridge University Press, Cambridge (1923a)

    Google Scholar 

  • Einstein, A.: Kosmologiche Betrachtungen zur allgemeinen Relativitätstheorie. Sitzungsber. Berl. Akad. 1, 142 (1917)

    Google Scholar 

  • Fournier d’Albe, E.: Two New Worlds. Longmans Green, London (1907)

    Google Scholar 

  • Friedmann, A.: On the curvature of space. Z. Phys. 10, 377 (1922)

    Article  ADS  Google Scholar 

  • Friedmann, A.: The World as Space and Time. Academia, Petrograd (1923) (in Russian)

    Google Scholar 

  • Friedmann, A.: On a possibility of world with constant negative curvature of space. Z. Phys. 21, 326 (1924)

    Article  MathSciNet  ADS  Google Scholar 

  • Gromov, A., Baryshev, Yu., Teerikorpi, P.: Two-fluid matter-quintessence FLRW models: Energy transfer and the equation of state of the universe. Astron. Astrophys. 415, 813 (2004)

    Article  ADS  Google Scholar 

  • Guth, A.H.: Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347 (1981)

    Article  ADS  Google Scholar 

  • Harrison, E.R.: Cosmology–The Science of the Universe, 1st edn. Cambridge University Press, Cambridge (1981), 2nd edition 2000

    Google Scholar 

  • Harrison, E.R.: Darkness at Night. Harvard University Press, Cambridge (1987)

    Google Scholar 

  • Holtsmark, J.: Über die Verbreiterung von Spektrallinien. Ann. Phys. 58, 577 (1919)

    Article  Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Pergamon, Oxford (1971)

    Google Scholar 

  • Lehti, R.: Time in relativity theory and cosmology. In: Pihlström, S., Siitonen, A., Vilkko, R. (eds.) Aika, p. 82 (2000) (in Finnish)

    Google Scholar 

  • Lehti, R.: The concept of space in relativity theory and cosmology. In: Martikainen, E. (ed.) Infinity, Causality and Determinism. Peter Lang, Oxford (2002)

    Google Scholar 

  • Lemaître, G.: Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques. Ann. Soc. Sci. Brux. 47, 49 (1927)

    Google Scholar 

  • Lemaître, G.: A homogeneous universe of constant mass and increasing radius accounting for the radial velocity of extra-galactic nebulae. Mon. Not. R. Astron. Soc. 91, 483 (1931) (translation from the original 1927 paper)

    ADS  Google Scholar 

  • Mädler, J.H.v.: Geschichte der Himmelskunde, vol. 2. Druck und Verlag von George Westermann, Brauschweig (1873)

    MATH  Google Scholar 

  • Mattig, W.: Über den Zusammenhang zwischen Rotverschiebung und scheinbarer Helligkeit. Astron. Nachr. 284, 109 (1958)

    Article  ADS  Google Scholar 

  • McVittie, G.C.: Distance and large redshifts. Q. J. R. Astron. Soc. 15, 246 (1974)

    ADS  Google Scholar 

  • Narlikar, J.: Introduction to Cosmology, 2nd edn. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  • Neumann, C.: Allgemeine Untersuchungen über das Newtonsche Prinzip der Fernwirkungen. Teubner, Leipzig (1896)

    Google Scholar 

  • North, J.D.: The Measure of the Universe. Clarendon, Oxford (1965)

    Google Scholar 

  • Padmanabhan, T.: Understanding our universe: Current status and open issues (2005). gr-qc/0503107

  • Peebles, P.J.E., Ratra, B.: The cosmological constant and dark energy. Rev. Mod. Phys. 75, 599 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  • Petrovskaya, I.V.: The distribution function of the force acting on a star for powerful interaction. Pisma Astron. Zh. 12, 562 (1986)

    ADS  Google Scholar 

  • Samuel, S.: Comments on an expanding universe (2005). astro-ph/0512282

  • Teerikorpi, P.: Cosmological Malmquist bias in the Hubble diagram at high redshifts. Astron. Astrophys. 339, 647 (1998)

    ADS  Google Scholar 

  • Teerikorpi, P., Gromov, A., Baryshev, Yu.: Limits on dark energy–matter interaction from the Hubble relation for two-fluid FLRW models. Astron. Astrophys. 407, L9 (2003)

    Article  ADS  Google Scholar 

  • Teerikorpi, P., Valtonen, M., Lehto, K., Lehto, H., Byrd, G., Chernin, A.: The Evolving Universe and the Origin of Life—The Search for Our Cosmic Roots. Springer, New York (2009)

    Google Scholar 

  • von Seeliger, H.: Über das Newton’sche Gravitationsgesetz. Astron. Nachr. 137, 129 (1895)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurij Baryshev .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Baryshev, Y., Teerikorpi, P. (2012). The Friedmann Model. In: Fundamental Questions of Practical Cosmology. Astrophysics and Space Science Library, vol 383. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2379-5_7

Download citation

Publish with us

Policies and ethics