Skip to main content

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 383))

  • 1235 Accesses

Abstract

The tremendous growth of observational efforts devoted to cosmological questions shows that cosmology is becoming a mature physical science with its own subject and methods. This is a novel situation for a field which up to recent times has been characterized by a respectable collection of theoretical ideas, but a small number of crucial observations to constrain them. Only six decades ago Hermann Bondi (1952) expressed the state of cosmology at the time so that “…the checking of a prediction, which usually forms such a vital link in the formulation of physical theories, does not occur in this field, and we have to rely on less objective and certain criteria, such as how satisfying and how simple a theory is”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Over thirty years later, in Morgan’s system the classes (a, af, f, fg, g, gk, k) change in the sense of increasing domination of the nuclear component, together with a simultaneous change in the spectral type. Lundmark’s and Morgan’s classes are rather well correlated.

  2. 2.

    Sandage devoted much thought to the birth and meaning of Hubble’s classification (Sandage and Bedke 1994; Sandage 1995b, 2005). He suggested that this faculty helping one to go directly to the useful, physically relevant classification system is “imagination” or “intuition”. For Aristotle, scientific knowledge was essentially demonstrations from better known premises. Then how to find the very first axioms, the starting-points of demonstration? His solution was to argue, in Posterior Analytics, that all begins from the intuition of the thinker observing and contemplating Nature. This seems to fit well with what Allan Sandage proposed to be the secret of Hubble and his classification.

  3. 3.

    Already in 1941 a residual radiation corresponding to a black body temperature of 2.3 K was found by A. McKellar (1941) who investigated spectral lines of interstellar CN molecules. T. Shmaonov (1957) detected with the Large Pulkovo Radio Telescope at a wavelength of 3.2 cm an isotropic radiation with an effective temperature of 4±3 K. These results were published, but they did not yet attract the attention of cosmologists.

  4. 4.

    For instance, if there were obscuring dust in the extragalactic space between us and the nearest galaxy M31, just one fifth of the density typical within the Milky Way, M31 (faintly visible by plain eye) were blocked out of the sight of even the largest optical telescopes.

  5. 5.

    According to Webster’s dictionary “exotic” means “striking or unusual in effect or appearance; strange; exciting; glamorous”. All this applies to the new cosmological physics which differs from what is known from laboratory studies. It is even as if “introduced from abroad, but not fully naturalized or acclimatized”.

References

  • Amelino-Camelia, G., Lammerzahl, C., Macias, A., Muller, H.: The search for quantum gravity signals. In: Gravitation and Cosmology: 2nd Mexican Meeting on Mathematical and Experimental Physics. AIP Conf. Proc., vol. 758, p. 30 (2005)

    Google Scholar 

  • Baertschiger, T., Joyce, M., Sylos Labini, F.: Power-law correlation and discreteness in cosmological N-body simulations. Astrophys. J. 581, L63 (2002)

    Article  ADS  Google Scholar 

  • Baryshev, Yu.V.: Conceptual problems of the standard cosmological model. In: Proc. of the 1-st Int. Conf. Crisis in Cosmology. AIP Conf. Proc., vol. 822, p. 23 (2006)

    Google Scholar 

  • Baryshev, Yu., Teerikorpi, P.: Discovery of Cosmic Fractals. World Scientific, Singapore (2002), 408 pp (Polish translation: Poznawanie kosmicznego ladu Wszechswiat, WAM, Krakow, 2005; Italian translation: La scoperta dei frattali cosmici, Bollati Boringhieri, Torino, 2006)

    Book  Google Scholar 

  • Baryshev, Yu., Teerikorpi, P.: The fractal analysis of the large-scale galaxy distribution. Bull. Spec. Astrophys. Obs. 59, 92 (2006)

    Google Scholar 

  • Berendzen, R., Hart, R., Seeley, D.: Man Discovers the Galaxies. Science History, New York (1976), 228 pp

    Google Scholar 

  • Bertolami, O., Paramos, J., Turyshev, S.: General theory of relativity: Will it survive the next decade. In: Dittus, H., Laemmerzahl, C., Turyshev, S. (eds.) Lasers, Clocks, and Drag-Free: Technologies for Future Exploration in Space and Tests of Gravity, p. 27. Springer, Berlin (2006a)

    Google Scholar 

  • Bertolami, O., de Matos, C.J., Grenouilleau, J.C., Minster, O., Volonté, S.: Perspectives in fundamental physics in space. Acta Astronaut. 59, 490 (2006b)

    Article  ADS  Google Scholar 

  • Bondi, H.: Cosmology. Cambridge University Press, Cambridge (1952) (2nd edition 1968)

    MATH  Google Scholar 

  • Caldwell, R.R., Dave, R., Steinhardt, P.J.: Cosmological imprint of an energy component with general equation of state. Phys. Rev. Lett. 80, 1582 (1998)

    Article  ADS  Google Scholar 

  • Chernin, A.: Cosmic vacuum. Phys. Usp. 44, 1153 (2001)

    Article  Google Scholar 

  • de Bernardis, P., Ade, P., Bock, J., et al.: A flat Universe from high-resolution maps of the cosmic microwave background radiation. Nature 404, 955 (2000)

    Article  ADS  Google Scholar 

  • de Vaucouleurs, G.: The case for a hierarchical cosmology. Science 167, 1203 (1970)

    Article  ADS  Google Scholar 

  • Einstein, A.: Kosmologiche Betrachtungen zur allgemeinen Relativitätstheorie. Sitzungsber. Berl. Akad. 1, 142 (1917)

    Google Scholar 

  • Einstein, A.: Geometry and experience. Lecture before the Preussian Academy of Sciences Jan. 27, 1927 (1921). Printed in Einstein: Ideas and Opinions (1973, Souvenir Press, London)

    Google Scholar 

  • Feng, J.L.: Dark matter candidates from particle physics and methods of detection. Annu. Rev. Astron. Astrophys. 48, 495 (2010)

    Article  ADS  Google Scholar 

  • Friedmann, A.: On the curvature of space. Z. Phys. 10, 377 (1922)

    Article  ADS  Google Scholar 

  • Gabrielli, A., Sylos Labini, F., Joyce, M., Pietronero, L.: Statistical Physics for Cosmic Structures. Springer, Berlin (2005)

    Google Scholar 

  • Gott, J.R. III, Juric, M., Schlegel, D., et al.: A map of the universe. Astrophys. J. 624, 463 (2005)

    Article  ADS  Google Scholar 

  • Grene, M.: A Portrait of Aristotle. The University of Chigaco Press, Chicago (1963)

    Google Scholar 

  • Haugan, M.P., Lämmerzahl, C.: Principles of equivalence: Their role in gravitation physics and experiments that test them. Lect. Notes Phys. 562, 195 (2001)

    Article  ADS  Google Scholar 

  • Hoyle, F., Burbidge, G., Narlikar, J.: A Different Approach to Cosmology. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  • Hubble, E.: Extra-galactic nebulae. Astrophys. J. 64, 321 (1926)

    Article  ADS  Google Scholar 

  • Hubble, E.: A relation between distance and radial velocity among extra-galactic nebulae. Proc. Natl. Acad. Sci. USA 15, 168 (1929)

    Article  ADS  MATH  Google Scholar 

  • Hubble, E.: The Realm of the Nebulae. Yale University Press, New Haven (1936a)

    Google Scholar 

  • Hubble, E.: The Observational Approach to Cosmology. Clarendon, Oxford (1937) (68 pp)

    Google Scholar 

  • Hubble, E., Humason, M.L.: The velocity–distance relation among extra-galactic nebulae. Astrophys. J. 74, 43 (1931)

    Article  ADS  Google Scholar 

  • Kiang, T.: On the clustering of rich clusters of galaxies. Mon. Not. R. Astron. Soc. 135, 1 (1967)

    ADS  Google Scholar 

  • Lundmark, K.: A preliminary classification of nebulae. Ark. Mat. Astron. Fys. 19(8) (1926)

    Google Scholar 

  • Magueijo, J., Barrow, J., Sandvik, H.B.: Is it e or is it c? Experimental tests of varying α. Phys. Lett. B 549, 284 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  • Mandelbrot, B.B.: Fractals: Form, Chance and Dimension. W.H. Freeman, New York (1977)

    MATH  Google Scholar 

  • Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H. Freeman, New York (1982)

    MATH  Google Scholar 

  • Massey, R., Rhodes, J., Ellis, R., et al.: Dark matter maps reveal cosmic scaffolding. Nature 445, 286 (2007a)

    Article  ADS  Google Scholar 

  • Mather, J.C., Fixsen, D.J., Shafer, R.A., Mosier, C., Wilkinson, D.T.: Calibrator design for the COBE far infrared absolute spectrophotometer (FIRAS). Astrophys. J. 512, 511 (1999)

    Article  ADS  Google Scholar 

  • McKellar, A.: Molecular lines from the lowest states of diatomic molecules composed of atoms probably present in interstellar space. Publ. Dom. Astrophys. Obs. 7, 251 (1941)

    ADS  Google Scholar 

  • Peacock, J.A.: Cosmological Physics. Cambridge Univ. Press, Cambridge (1999)

    MATH  Google Scholar 

  • Peebles, P.J.E.: From precision cosmology to accurate cosmology (2002). astro-ph/0208037

  • Penzias, A., Wilson, R.: A measurement of excess antenna temperature at 4080 Mc/s. Astrophys. J. 142, 419 (1965)

    Article  ADS  Google Scholar 

  • Perlmutter, S., Aldering, G., Goldhaber, G., et al.: Measurements of Ω and Λ from 42 high–redshift supernovae. Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  • Pietronero, L.: The fractal structure of the Universe: correlations of galaxies and clusters and the average mass density. Physica A 144, 257 (1987)

    Article  ADS  MATH  Google Scholar 

  • Poincaré, H.: La science et l’hypothèse (1902) (Flammarion, Paris, 1968)

    MATH  Google Scholar 

  • Riess, A.G., Filippenko, A.V., Challis, P., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  • Sandage, A.: The ability of the 200-inch telescope to discriminate between selected world models. Astrophys. J. 133, 355 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  • Sandage, A.: The search for the curvature of space. Phys. Scr. T43, 7 (1992)

    Article  ADS  Google Scholar 

  • Sandage, A.: Practical cosmology: Inventing the past. In: Binggeli, Buser, R. (eds.) The Deep Universe, pp. 1–232. Springer, Berlin (1995b)

    Google Scholar 

  • Sandage, A.: Bias properties of extragalactic distance indicators. VIII, H 0 from distance-limited luminosity class and morphological type-specific luminosity functions for Sb, Sbc, and Sc galaxies calibrated using Cepheids. Astrophys. J. 527, 479 (1999)

    Article  ADS  Google Scholar 

  • Sandage, A.: The classification of galaxies: Early history and ongoing developments. Annu. Rev. Astron. Astrophys. 43, 581 (2005)

    Article  ADS  Google Scholar 

  • Sandage, A., Bedke, J.: The Carnegie Atlas of Galaxies, vols. I, II. Carnegie Institution, Washington (1994)

    Google Scholar 

  • Shmaonov, T.: Prib. Teh. Eksp. 1, 83 (1957) (in Russian)

    Google Scholar 

  • Slipher, V.M.: Spectrographic observations of nebulae. Pop. Astron. 23, 21 (1915)

    ADS  Google Scholar 

  • Smith, R.W.: The Expanding Universe: Astronomy’s ‘Great Debate’ 1900–1931. Cambridge Univ. Press, Cambridge (1982), 220 pp

    Google Scholar 

  • Spergel, D.N., Steinhardt, P.J.: Observational evidence for self-interacting cold dark matter. Phys. Rev. Lett. 84, 3760 (2000)

    Article  ADS  Google Scholar 

  • Spergel, D.N., Bean, R., Dore, O., et al.: Three-year Wilkinson microwave anisotropy probe (WMAP) observations: Implications for cosmology. Astrophys. J. Suppl. 170, 377 (2007)

    Article  ADS  Google Scholar 

  • Sylos Labini, F., Montuori, M., Pietronero, L.: Scale-invariance of galaxy clustering. Phys. Rep. 293, 61 (1998)

    Article  ADS  Google Scholar 

  • Teerikorpi, P.: Lundmark’s unpublished 1922 nebula classification. J. Hist. Astron. 20, 165 (1989)

    ADS  Google Scholar 

  • Totsuji, H., Kihara, T.: The correlation function for the distribution of galaxies. Publ. Astron. Soc. Jpn. 21, 221 (1969)

    ADS  Google Scholar 

  • Turner, M.: Making sense of the new cosmology. Int. J. Mod. Phys. A 17, 180 (2002)

    Article  ADS  MATH  Google Scholar 

  • Uzan, J.-P.: The fundamental constants and their variation: Observational status and theoretical motivations. Rev. Mod. Phys. 75, 403 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Wu, K., Lahav, O., Rees, M.: The large-scale smoothness of the universe. Nature 397, 225 (1999)

    Article  ADS  Google Scholar 

  • Zwicky, F.: Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta 6, 110 (1933)

    ADS  Google Scholar 

  • Zwicky, F.: On the masses of nebulae and of clusters of nebulae. Astrophys. J. 86, 217 (1937)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurij Baryshev .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Baryshev, Y., Teerikorpi, P. (2012). The Golden Age of Cosmological Physics. In: Fundamental Questions of Practical Cosmology. Astrophysics and Space Science Library, vol 383. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2379-5_1

Download citation

Publish with us

Policies and ethics