Beyond a Minimal Basis

  • Edward MackinnonEmail author
Part of the Boston Studies in the Philosophy of Science book series (BSPS, volume 289)


This chapter initiates a path beyond orthodoxy by analyzing the practices of physics, rather than idealized theories. It focuses on the roles of mathematics and symmetry principles in extending beyond the limits of Bohrian semantics. Quantum electrodynamics illustrates the interrelation of formal and informal inferences in interpreting correction terms to the Lamb shift and the anomalous magnetic moment of the electron and muon. These calculations show the necessity of including virtual processes in any account of the quantum realm. The standard model of particle physics relies on local gauge invariance and on symmetry principles as postulations not sanctione4d by orthodox quantum mechanics or algebraic quantum field theory. The chapter concludes with an analysis of the distinctive features of quantum systems: superposition, interference, distributed probability, and entanglement.


Feynman Diagram Anomalous Magnetic Moment Ordinary Language Lamb Shift Relative Ontology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Auletta, Gennaro. (ed.) 2000. Foundations and Interpretation of Quantum Mechanics in the Light of a Critical-Historical Analysis of the Problems and of a Synthesis of the Results. Singapore: World Scientific.Google Scholar
  2. Auyang, Sunny. 1995. How is Quantum Field Theory Possible? New York, NY: Oxford University Press.Google Scholar
  3. Bennett, G. W. et al. 2002. Measurement of the Positive Muon Anomalous Magnetic Moment to 0.7 ppm. Physical Review Letters, 89, 101.Google Scholar
  4. Bethe, Hans. 1947. The Electromagnetic Shift of Energy Levels. Physical Review, 72, 339–341.CrossRefGoogle Scholar
  5. Bitbol, Michel. 1996. Mécanique Quantique. Paris: Flammarion.Google Scholar
  6. Brown, Harvey, and Rom Harré. 1988. Philosophical Foundations of Quantum Field Theory. Oxford: Clarendon Press.Google Scholar
  7. Buchholz, Detlev, and Rudolf Haag. 1999. The Quest for Understanding in Relativistic Quantum Physics.Google Scholar
  8. Calmet, Xavier, Harald Fritzsch, and Dirk Holtmannspoeter. 2001. Anomalous Magnetic Moment of the Muon Andradiative Lepton Decay. Physical Review D, 64, 64.CrossRefGoogle Scholar
  9. Cao, Tian Yu. 1998. Conceptual Developments of 20th Century Field Theories. Cambridge: Cambridge University Press.Google Scholar
  10. Fraser, Doreen. 2009. Quantum Field Theory: Underdetermination, Inconsistency, and Idealization. Philosophy of Science, 76, 536–567.CrossRefGoogle Scholar
  11. Galison, Peter. 1987. How Experiments End. Chicago, IL: University of Chicago Press.Google Scholar
  12. Greene, Brian. 1999. The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory. New York, NY: Vintage Books.Google Scholar
  13. Haag, Rudolf. 1992. Local Quantum Physics: Fields, Particles, Algebras. Berlin: Springer.CrossRefGoogle Scholar
  14. Healey, Richard A. 1989. The Philosophy of Quantum Mechanics: An Interactive Interpretation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  15. Heidegger, Martin. 1962. Being and Time. New York, NY: Harper & Row.Google Scholar
  16. Hoddeson, Lillian, Laurie Brown, Michael Riordan, and Max Dresden. 1997. The Rise of the Standard Model: Particle Physics in the 1960s and 1970s. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  17. Johnson, George. 1999. Strange Beauty: Murray Gell-Mann and the Revolution in Twentieth-Century Physics. New York, NY: Alfred Knopf.Google Scholar
  18. Kaku, Michio. 1993. Quantum Field Theory: A Modern Introduction. New York, NY: Oxford University Press.Google Scholar
  19. Kane, Gordon. 2000. Supersymmetry: Squarks, Photinos, and the Unveiling of the Ultimate Laws of Nature. Cambridge, MA: Perseus Publishing.Google Scholar
  20. Kernan, Ann. 1986. The Discovery of Intermediate Vector Bosons. American Scientist, 74, 21–24.Google Scholar
  21. Kroll, Norman, and Willis Lamb. 1949. On the Self-energy of a Bound Electron. Physical Review, 75, 388–398.CrossRefGoogle Scholar
  22. Kuhlmann, Meinard, Holger Lyre, and Andrew Wayne. 2002. Ontological Aspects of Quantum Field Theory. River Edge, NJ: World Scientific.CrossRefGoogle Scholar
  23. MacKinnon, Edward. 1977. Heisenberg, Models, and the Rise of Matrix Mechanics. Historical Studies in the Physical Sciences, 8, 137–188.CrossRefGoogle Scholar
  24. MacKinnon, Edward. 1998. Review of Michel Bitbol’s Mecanique Quantique: Une Introduction Philosophique. Isis, 89, 360–361.CrossRefGoogle Scholar
  25. MacKinnon, Edward. 2008. The Standard Model as a Philosophical Challenge. Philosophy of Science, 75, 447–457.CrossRefGoogle Scholar
  26. Pickering, Andrew. 1984. Constructing Quarks: A Sociological History of Particle Physics. Chicago, IL: University of Chicago Press.Google Scholar
  27. Pokorski, Stefan. 2004. Phenomenological Guide to Physics Beyond the Standard Model. arXiv/hep-ph, 0502132.Google Scholar
  28. Redhead, Michael L. G., and Fabian Wagner. 1998. Unified Treatment of EPR and Bell Arguments in Algebraic Quantum Field Theory. ArXiv:09083.2844v1, quant-ph/9802010.Google Scholar
  29. Salpeter, Edwin. 1953. The Lamb Shift for Hydrogen adn Deuterium. Physical Review, 89, 92–99.CrossRefGoogle Scholar
  30. Samios, Nicholas. 1997. Early Baryon and Meson Spectroscopy Culminating in the Discovery of the Omega-Minus and Charmed Baryons. In Hoddeson et al. (ed.), The Rise of the Standard Model (pp. 525–541). Cambridge: Cambridge University Press.Google Scholar
  31. Schmelling, Michael. 1997. Status of the Strong Coupling Constant. http://arXiv:hep-th, 9701002.Google Scholar
  32. Schweber, Silvan S. 1994. QED and the Men Who Made it. Princeton, NJ: Princeton University Press.Google Scholar
  33. Seibt, Johanna. 2002. Quanta, Tropes, or Processes: Ontologies for QFT Beyond the Myth of Substance. In Meinrad Kuhlmann, et al. (eds.), Ontological Aspects of Quantum Field Theory. Singapore: World Scientific.Google Scholar
  34. ’t Hooft, G. 1997. In Search of the Ultimate Building Blocks. Cambridge: Cambridge University Press.Google Scholar
  35. Teller, Paul. 1995. An Interpretive Introduction to Quantum Field Theory. Princeton, NJ: Princeton University Press.Google Scholar
  36. Wayne, Andrew. 1998. Conceptual Foundations of Field Theories in Physics. In Don A. Howard (ed.), PSA98. Part II; Symposia Papers (pp. S466–S522). Kansas City, MO: Philosophy of Science Association.Google Scholar
  37. Weinberg, Steven. 1995. The Quantum Theory of Fields: Vol. I. Cambridge, NY: Cambridge University Press.Google Scholar
  38. Wevers, ir. J. C. A. 2001. Physics Formulary. johanw/index.html
  39. Whitehead, Alfred North. 1929. Process and Reality: An Essay in Cosmology. New York, NY: Macmillan.Google Scholar
  40. Wilczek, Frank. 1999. Quantum Field Theory. Reviews of Modern Physics, 71, S85–S95.CrossRefGoogle Scholar
  41. Wilczek, Frank. 2000. Future Summary. http://arXiv:hep-th, 0101087.Google Scholar
  42. Wilczek, Frank. 2002a. QCD and Natural Philosophy. http://arXiv:physics, 0212025.Google Scholar
  43. Wilczek, Frank. 2002b. Inventory and Outlook of High Energy Physics. http://arXiv:hep-th, 0202128.Google Scholar
  44. Wilczek, Frank. 2004a. Asymptotic Freedom: From Paradox to Paradigm. http://arXiv:hep-ph, 0502113.Google Scholar
  45. Wilczek, Frank. 2004b. A Model of Anthropic Reasoning: Addressing the Dark to Ordinary Matter Coincidence. http://arXiv:hep-ph, 0408167.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.California State University East BayOaklandUSA

Personalised recommendations