Advertisement

The Interpretation of Classical Physics

  • Edward MackinnonEmail author
Chapter
  • 992 Downloads
Part of the Boston Studies in the Philosophy of Science book series (BSPS, volume 289)

Abstract

In introducing a new non-classical physics Einstein and Bohr indirectly specified the limits of classical physics. Einstein’s special relativity put constraints on all the laws of physics, giving these laws a functional unification. Bohr effectively resolved the contradictions physicists were encountering through semantic guidelines limiting the use of classical terms in quantum contexts. This is systematized as Bohrian semantics. To accommodate the interrelation of theoretical deductive inferences and informal experimental inferences we develop a dual inference system.

Keywords

Thought Experiment Ordinary Language Space Quantization Mass Noun Count Noun 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adams, Ernest. 1979. Measurement Theory. In P. Asquith, and H. Kyburg (eds.), Current Research in the Philosophy of Science (pp. 207–227). East Lansing, MI: Philosophy of Science Association.Google Scholar
  2. Boltzmann, Ludwig. 1974. Theoretical Physics and Philosophical Problems. Dordrecht: D. Reidel.CrossRefGoogle Scholar
  3. Boorse, Henry A., and Lloyd Motz. 1966. The World of the Atom. New York, NY: Basic Books.Google Scholar
  4. Campbell, Norman. 1920. Physics: The Elements. Cambridge: Cambridge University Press.Google Scholar
  5. Cartwright, Helen. 1965. Heraclitus and the Bath Water. The Philosophical Review, 74, 466.CrossRefGoogle Scholar
  6. Chevalley, Catherine. 1991. Niels Bohr: Physique atomique et connaissance humaine. Paris: Gallimard.Google Scholar
  7. Cushing, James T. 1994. Quantum Mechanics: Historical Contingency and the Copenhagen Hegemony. Chicago, IL: University of Chicago Press.Google Scholar
  8. Darrigol, Olivier. 1992. From C-Numbers to Q-Numbers: The Classical Analogy in the History of Quantum Theory. Berkeley, CA: University of California Press.Google Scholar
  9. Einstein, Albert. 1905a. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. der Phys., 17, 549–560.CrossRefGoogle Scholar
  10. Einstein, Albert. 1905b. Zur Elektrodynamik bewegter Koerper. Ann. der Phys., 17, 891–921.CrossRefGoogle Scholar
  11. Einstein, Albert. 1905c. Über einen die Erzeugung und Verwandlung des Lichtes betreffended heuristischen Gesichtspunkt. Ann. der Phys., 17, 132–148.CrossRefGoogle Scholar
  12. Ellis, Brian. 1968. Basic Concepts of Measurement. Cambridge: Cambridge University Press.Google Scholar
  13. Faye, Jan. 1991. Niels Bohr: His Heritage and Legacy: An Anti-Realist View of Quantum. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  14. Faye, Jan., and Henry J. Folse. 1994. Niels Bohr and Contemporary Philosophy. Dordrecht; Holland: Kluwer Academic Publishers.CrossRefGoogle Scholar
  15. Fine, Arthur. 1986. The Shaky Game. Chicago, IL: University of Chicago Press.Google Scholar
  16. Folse, Henry J. 1977. Complementarity and the Description of Experience. International Philosophical Quarterly, 17, 378.CrossRefGoogle Scholar
  17. Forman, Paul. 1968. The Doublet Riddle and Atomic Physics Circa 1924. Isis, 59, 156–174.CrossRefGoogle Scholar
  18. Furth, R. 1956. Investigations on the Theory of Brownian Motion. New York, NY: Dover.Google Scholar
  19. Giere, Ronald N. 2006. Scientific Perspectivism. Chicago, IL: University of Chicago Press.Google Scholar
  20. Hecht, Eugene, and Alfred Zajac. 1974. Optics. Reading, MA: Addison-Wesley.Google Scholar
  21. Heilbron, John. 1985. The Earliest Missionaries of the Coppenhagen Spirit. Revue d’histoire de sciences, 38, 195–203.CrossRefGoogle Scholar
  22. Helmholtz, Hermann von. 1977. Epistemological Writings: The Paul Hertz/Moritz Schlick Centenary Edition. Dordrecht: D. Reidel.CrossRefGoogle Scholar
  23. Hendry, John. 1984. The Creation of Quantum Mechanics and the Bohr-Pauli Dialogue. Dordrecht: D. Reidel.CrossRefGoogle Scholar
  24. Hertz, Heinrich. 1956. The Principles of Mechanics Presented in a New Form. New York, NY: Dover.Google Scholar
  25. Jammer, Max. 1966. The Conceptual Development of Quantum Mechanics. New York, NY: McGraw-Hill.Google Scholar
  26. Jurkowitz, Edward. 2002. Helmholtz and the Liberal Unification of Science. Historical Studies in the Physical Sciences, 32, 291–317.CrossRefGoogle Scholar
  27. Kline, M. 1972. Mathematical Thought from Ancient to Modern Times. New York: Oxford University Press.Google Scholar
  28. Koch, Christof, and Giulio Tononi. 2011. A Test for Consciousness. Scientific American, 304(6), 44–47.CrossRefGoogle Scholar
  29. Konno, Hiroyuki. 1993. Kramers’ Negative Dispersion, the Virtual Oscillator Model, and the Correspondence Principle. Centaurus, 36, 117–166.Google Scholar
  30. Kramers, H.A. 1957. Quantum Mechanics. Amsterdam: North Holland.Google Scholar
  31. Krantz, D., P. Suppes, and A. Tversky. 1971. Foundations of Measurement: Volume I. New York, NY: Academic Press.Google Scholar
  32. Kyburg, H. 1984. Theory and Measurement. Cambridge: Cambridge University Press.Google Scholar
  33. Levy-Leblond, Jean Marc. 1963. Galilei Group and Nonrelativistic Quantum Mechanics. Journal of mathematical Physics, 4, 776–788.CrossRefGoogle Scholar
  34. MacKinnon, Edward. 1977. Heisenberg, Models, and the Rise of Matrix Mechanics. Historical Studies in the Physical Sciences, 8, 137–188.CrossRefGoogle Scholar
  35. MacKinnon, Edward. 1982. Scientific Explanation and Atomic Physics. Chicago, IL: University of Chicago Press.Google Scholar
  36. MacKinnon, Edward. 1985. Bohr on the Foundations of Quantum Theory. In A. P. French, and P. J. Kennedy (eds.), Niels Bohr: A Centenary Volume (pp. 101–120). Cambridge: Harvard University Press.Google Scholar
  37. MacKinnon, Edward. 1994. Bohr and the Realism Debates. In J. Faye, and H. Folse (eds.), Niels Bohr and Contemporary Physics (pp. 279–304). Dordrecht: Kluwer.CrossRefGoogle Scholar
  38. MacKinnon, Edward. 2005. Einstein’s 1905 Brownian Motion Paper. CSI Communications, 29(6), 6–8.Google Scholar
  39. Massimi, Michela. (ed.) 2005. Pauli’s Exclusion Principle: The Origin and Validation of a Scientific Principle. New York, NY: Cambridge University Press.Google Scholar
  40. Mehra, Jagdish, and Helmut Rechenberg (eds.) 1982. The Quantum Theory of Planck, Einstein, Bohr, and Sommerfeld: Its Foundation and the Rise of Its Difficulties, 1900–1925. In Jagdish Mehra and Helmut Rechenberg. (eds.), The Historical Development of Quantum Theory (vol. 1, part 1–2). New York, NY: Springer.CrossRefGoogle Scholar
  41. Miller, Arthur I. 1981. Albert Einstein’s Special Theory of Relativity: Emergence (1905) and Early. Reading, MA: Addison-Wesley.Google Scholar
  42. Narens, Louis. 1985. Abstract Measurement Theory. Cambridge, MA: MIT Press.Google Scholar
  43. Niven, W. D. 1965. The Scientific Papers of James Clerk Maxwell. New York, NY: Dover.Google Scholar
  44. Pais, Abraham. 1982. Subtle Is the Lord: The Science and Life of Albert Einstein. Oxford: Clarendon Press.Google Scholar
  45. Petruccioli, Sandro. 1993. Atoms, Metaphors and Paradoxes: Niels Bohr and the Construction of a New. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  46. Quine, Willard Van Orman. 1960. Word & Object. Cambridge, MA: MIT Press.Google Scholar
  47. Radder, Hans. 1982. Between Bohr’s Atomic Theory and Heisenberg’s Matrix Mechanics. A Study of the Role of the Dutch Physicist, H. A. Kramers. Janus, 69, 223–252.Google Scholar
  48. Robotti, Nadia. 1983. The Spectrum of (zeta) Puppis and the Historical Evolution of Empirical Spectroscopy. Historical Studies in the Physical Sciences, 14, 123–145.CrossRefGoogle Scholar
  49. Röseberg, Ulrich. 1984. Szenarium einer Revolution. Berlin: Akademie-Verlag.Google Scholar
  50. Rosenfeld, L. et al. 1972. Niels Bohr: Collected Works. Amsterdam: North Holland.Google Scholar
  51. Schrödinger, Erwin. 1935. The Present Situation in Quantum Mechanics. In J. Wheeler, and W. Zurek (eds.), Quantum Theory and Measurement (pp. 152–167). Princeton, NJ: Princeton University Press, 1983.Google Scholar
  52. Shamos, Morris H. 1959. Great Experiments in Physics. New York, NY: Henry Holt and Company.Google Scholar
  53. Stachel, John et al. 1987. The Collected Papers of Albert Einstein: Vol. I: The Early Years, 1879–1905. Princeton, NJ: Princeton University Press.Google Scholar
  54. Stevins, S. S. 1946. On the Theory of Scales of Measurement. Science, 103, 677–680.CrossRefGoogle Scholar
  55. Stroke, G. W. 1969. An Introduction to Coherent Optics and Holography. New York, NY: Academic Press.Google Scholar
  56. Thompson, Silvanus P. 1910. The Life of William Thomson, Baron Kelvin of Largs (2 Vols.). London: MacMillan.Google Scholar
  57. Thomson, William P., and P. G. Tait. 1867. Treatise on Natural Philosophy. Oxford: Clarendon Press.Google Scholar
  58. Trigg, G. L. 1971. Crucial Experiments in Modern Physics. New York: Van Nostrand Reinhold.Google Scholar
  59. Van der Waerden, Bartel. 1967. Sources of Quantum Mechanics. New York, NY: Dover.Google Scholar
  60. Von Neumann, John, and Oscar Morgenstern. 1947. Theory of Games and Economic Behavior (2nd. edn.). Princeton, NJ: Princeton University Press.Google Scholar
  61. Wigner, Eugene. 1939. On Unitary Representations of the Inhomogeneous Lorentz Group. Annals of Mathematics, 40, 149–157.CrossRefGoogle Scholar
  62. Zimmerman, Dean. 1995. Theories of Masses and Problems of Constitution. The Philosophical Review, 104, 53–110.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.California State University East BayOaklandUSA

Personalised recommendations