Skip to main content

Carbon Cycle of Urban Ecosystems

  • Chapter
  • First Online:
Carbon Sequestration in Urban Ecosystems

Abstract

Urbanization is one of the most irreversible and visible anthropogenic forces on Earth. The fraction of urban population is growing and is predicted to reach 70% of the world’s population by 2050. Urban areas are both drivers and recipients of global environmental change. Carbon cycle of urban areas plays an important role in the feedbacks between urban development and global environmental change. On one side it is a driver of the global environmental change, because more than 70% of global CO2 emissions originate in urban areas. On the other side the global and regional environmental changes such as heat waves, water scarcity, and air pollution influence urban carbon cycle. Carbon cycling through natural (e.g., urban vegetation and soils) and anthropogenic components (e.g., buildings, furniture, landfills, etc.) is intrinsically coupled in urban areas. In cities not only green plants take up carbon, but also concrete buildings. Emissions of carbon from vegetation and soils are complemented by emissions from fossil fuel burning. Urban areas have a large variety of pools to store carbon: from vegetation and soil to buildings, furniture, and landfills. The natural and anthropogenic carbon fluxes through urban areas are controlled by common drivers such as climate and urban form. Three issues are identified as the most important ones for understanding and quantification of urban carbon cycle. They include: (i) the lateral flows of carbon between an urban area and its footprint; (ii) responses of urban vegetation to urban climate and pollution, and (iii) interactions between natural and anthropogenic components of the urban carbon cycle. Because both natural and anthropogenic components are equally important for understanding urban C cycle, they have to be considered simultaneously in the design of any observation strategy or numerical model development. Understanding of the urban C cycle and the whole spectrum of its C pools and fluxes would be beneficial not only for scientists, but also for city governments. It can be instrumental in choosing the optimal policy to reduce urban C footprint.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Annual estimates of the resident population for incorporated places over 100,000, Ranked by July 1, 2009 Population: April 1, 2000 to July 1, 2009 (2010). http://www.census.gov/popest/cities/SUB-EST2009.html. Accessed 7 Apr 2011

  • Barlaz MA (1998) Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills. Glob Biogeochem Cycle 12(2):373–380

    Article  CAS  Google Scholar 

  • Bornstein R, Lin Q (2000) Urban heat islands and summertime convective thunderstorms in Atlanta: three case studies. Atmos Environ 34(3):507–516

    Article  CAS  Google Scholar 

  • Brown MA, Southworth F, Sarzynski A (2008) Shrinking the carbon footprint of metropolitan America. The blueprint policy series. The Brookings Institution, Washington, DC

    Google Scholar 

  • Bureau of Economic Analysis, US Department of Commerce (2003) Fixed assets and consumer durable goods in the United States, 1925–97. Bureau of Economic Analysis, US Department of Commerce, Washington, DC

    Google Scholar 

  • Carlson TN, Arthur ST (2000) The impact of land use-land cover changes due to urbanization on surface microclimate and hydrology: a satellite perspective. Glob Planet Change 25:49–65

    Article  Google Scholar 

  • Chameides WL, Kasibhatla PS, Yienger J, Levy H II (1994) Growth of continental scale metro-agro-plexes, regional ozone pollution, and world food production. Science 264:74–76

    Article  PubMed  CAS  Google Scholar 

  • Chapin SF III, Mooney HA, Chapin MC, Matson PA (2002) Principles of terrestrial ecosystem ecology. Springer, New York

    Google Scholar 

  • Churkina G (2008) Modeling the carbon cycle of urban systems. Ecol Model 216(2):107–113

    Article  Google Scholar 

  • Churkina G, Brown D, Keoleian GA (2010) Carbon stored in human settlements: the conterminous US. Glob Change Biol 16:135–143. doi:doi: 10.1111/j.1365-2486.2009.02002.x

    Article  Google Scholar 

  • Diffenbaugh N (2009) Influence of modern land cover on the climate of the United States. Clim Dyn. doi:DOI 10.1007/s00382-009-0566-z

  • Dousset B, Gourmelon F, Laaidi K, Zeghnoun A, Giraudet E, Bretin P, Mauri E, Vandentorren S (2011) Satellite monitoring of summer heat waves in the Paris metropolitan area. Int J Climatol 31(2):313–323. doi:10.1002/joc.2222

    Article  Google Scholar 

  • Franklin Associates (1998) Characterization of building-related construction and demolition debris in the United States. The U.S. Environmental Protection Agency (EPA)

    Google Scholar 

  • Gajda J (2001) Absorption of atmospheric carbon dioxide by portland cement concrete. Portland Cement Association, Skokie

    Google Scholar 

  • Gajda J, Miller FM (2000) Concrete as a sink for atmospheric carbon dioxide: a literature review and estimation of CO2 absorption by portland cement concrete. Portland Cement Association, Skokie

    Google Scholar 

  • George K, Ziska LH, Bunce JA, Quebedeaux B (2007) Elevated atmospheric CO2 concentration and temperature across an urban-rural transect. Atmos Environ 41(35):7654–7665

    Article  CAS  Google Scholar 

  • Gratani L, Varone L (2005) Daily and seasonal variation of CO2 in the city of Rome in relationship with the traffic volume. Atmos Environ 39(14):2619–2624

    Article  CAS  Google Scholar 

  • Gregg JW, Jones CG, Dawson TE (2003) Urbanization effects on tree growth in the vicinity of New York city. Nature 424:183–187

    Article  PubMed  CAS  Google Scholar 

  • Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM (2008) Global change and the ecology of cities. Science 319(5864):756–760. doi:10.1126/science.1150195

    Article  PubMed  CAS  Google Scholar 

  • Hsueh DY, Krakauer NY, Randerson JT, Xu X, Trumbore SE, Southon JR (2007) Regional patterns of radiocarbon and fossil fuel-derived CO2 in surface air across North America. Geophys Res Lett 34(2):L02816. doi:10.1029/2006gl027032

    Article  Google Scholar 

  • Hutyra LR, Yoon B, Alberti M (2011) Terrestrial carbon stocks across a gradient of urbanization: a study of the Seattle, WA region. Glob Change Biol 17(2):783–797. doi:10.1111/j.1365-2486.2010.02238.x

    Article  Google Scholar 

  • IEA (2008) World energy outlook 2008: executive summary. International Energy Agency (IEA), Paris

    Google Scholar 

  • IEA (2010) Key world energy statistics 2010. International Energy Agency (IEA), Paris

    Google Scholar 

  • Kalnay E, Cai M (2003) Impact of urbanization and land use change on climate. Nature 423:528–531

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann RK, Seto KC, Schneider A, Liu Z, Zhou L, Wang W (2007) Climate response to rapid urban growth: evidence of a human-induced precipitation deficit. J Climatol 20(10):2299–2306

    Article  Google Scholar 

  • Kennedy C, Steinberger J, Gasson B, Hansen Y, Hillman T, HavraÌnek M, Pataki D, Phdungsilp A, Ramaswami A, Mendez GV (2009) Greenhouse gas emissions from global cities. Environ Sci Technol 43(19):7297–7302. doi:10.1021/es900213p

    Article  PubMed  CAS  Google Scholar 

  • Kjellsen KO, Guimaraes M, Nilsson A (2005) The CO2 balance of concrete in a life cycle perspective. Nordic Innovation Centre, Oslo

    Google Scholar 

  • Kleinman LI, Daum PH, Imre D, Lee YN, Nunnermacker LJ, Springston SR, Weinstein-Lloyd J, Rudolph J (2002) Ozone production rate and hydrocarbon reactivity in 5 urban areas: a cause of high ozone concentration in Houston. Geophys Res Lett 29(10):1467. doi:10.1029/2001gl014569

    Article  Google Scholar 

  • Lamptey BL, Barron EJ, Pollard D (2005) Impacts of agriculture and urbanization on the climate of the Northeastern United States. Glob Planet Change 49(3–4):203–221

    Article  Google Scholar 

  • Larcher W (1995) Physiological plant ecology, 3rd edn. Springer, Berlin

    Google Scholar 

  • Lawrence MG, Butler TM, Steinkamp J, Gurjar BR, Lelieveld J (2007) Regional pollution potentials of megacities and other major population centers. Atmos Chem Phys 7:3969–3987

    Article  CAS  Google Scholar 

  • Major DC, Goldberg RA (2001) Water supply. In: Rosenzweig C, Soleki WD (eds) Metropolitan east coast assessment report. Columbia Earth Institute, New York, pp 87–102

    Google Scholar 

  • Newman PWG, Kenworthy J (1999) Sustainability and cities: overcoming automobile dependence. Island Press, New York

    Google Scholar 

  • Nowak DJ, Noble MH, Sisinni SM, Dwyer JF (2001) People and trees assessing the US urban forest resource. J For 99 (3):37–42

    Google Scholar 

  • Nowak DJ, Crane DE (2002) Carbon storage and sequestration by urban trees in the USA. Environ Pollut 116:381–389

    Article  PubMed  CAS  Google Scholar 

  • Odum EP (1997) Ecology: a bridge between science and society. Sinauer Associates, Sunderland

    Google Scholar 

  • Oelkers EH, Gislason SR, Matter J (2008) Mineral carbonation of CO2. Elements 4(5):333–337. doi:10.2113/gselements.4.5.333

    Article  CAS  Google Scholar 

  • Oke TR (1988) Boundary layer climates. Routledge, London

    Google Scholar 

  • Pataki D, Alig RJ, Fung AS, Golubiewski NE, Kennedy CA, McPherson EG, Nowak DJ, Pouyat RV, Romero Lankao P (2006) Urban ecosystems and the North American carbon cycle. Glob Change Biol 12(11):2092–2102

    Article  Google Scholar 

  • Pataki DE, Emmi PC, Forster CB, Mills JI, Pardyjak ER, Peterson TR, Thompson JD, Dudley-Murphy E (2009) An integrated approach to improving fossil fuel emissions scenarios with urban ecosystem studies. Ecol Complex 6(1):1–14

    Article  Google Scholar 

  • Pouyat RV, Yesilonis ID, Nowak DJ (2006) Carbon storage by urban soils in the United States. J Environ Qual 35(4):1566–1575

    Article  PubMed  CAS  Google Scholar 

  • Ramaswami A, Hillman T, Janson B, Reiner M, Thomas G (2008) A demand-centered, hybrid life-cycle methodology for city-scale greenhouse gas inventories. Environ Sci Technol 42(17):6455–6461. doi:10.1021/es702992q

    Article  PubMed  CAS  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS, Vose JM, Volin JC, Gresham C, Bowman WD (1998) Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups. Oecologia 114:471–482

    Article  Google Scholar 

  • Rosenfeld D, Lohmann U, Raga GB, O’Dowd CD, Kulmala M, Fuzzi S, Reissell A, Andreae MO (2008) Flood or drought: how do aerosols affect precipitation? Science 321(5894):1309–1313. doi:10.1126/science.1160606

    Article  PubMed  CAS  Google Scholar 

  • Shepherd JM (2005) A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interact 9(12):1–27

    Article  Google Scholar 

  • Theobald DM (2005) Landscape patterns of exurban growth in the USA from 1980 to 2020. Ecol Soc 10(1):32

    Google Scholar 

  • Townsend-Small A, Czimczik CI (2010) Carbon sequestration and greenhouse gas emissions in urban turf. Geophys Res Lett 37(2):L02707. doi:10.1029/2009gl041675

    Article  Google Scholar 

  • Trusilova K, Churkina G (2008) The response of the terrestrial biosphere to urbanization: land cover conversion, climate, and urban pollution. Biogeosciences 5(6):1505–1515

    Article  CAS  Google Scholar 

  • Trusilova K, Jung M, Churkina G, Karstens U, Heimann M, Claussen M (2008) Urbanization impacts on the climate of Europe: numerical experiments with the PSU/NCAR mesoscale model (MM5). J Appl Meteorol Climatol 47(5):1442–1455

    Article  Google Scholar 

  • UN (2008) World Urbanization Prospects: the 2007 Revision (trans: United Nations Department of Economic and Social Affairs PD). United Nations, New York

    Google Scholar 

  • Wang W, Pataki D (2010) Spatial patterns of plant isotope tracers in the Los Angeles urban region. Landsc Ecol 25(1):35–52

    Article  CAS  Google Scholar 

  • Waring R, Running SW (1998) Forest ecosystems: analysis at multiple scales, 2nd edn. Academic, New York

    Google Scholar 

  • Wilson JB (2006) Using wood products to reduce global warming. In: Achteman G, Bachelet D, Burnett M et al (eds) Forests, carbon and climate change. Oregon Forest Resources Institute, Portland, pp 117–129

    Google Scholar 

  • Zhao T, Brown DG, Bergen KM (2007) Increasing gross primary production (GPP) in the urbanizing landscapes of Southeastern Michigan. Photogramm Eng Remote Sens 73(10):1159–1168

    Google Scholar 

  • Ziska LH, Bunce JA, Goins EW (2004) Characterization of an urban-rural CO2/temperature gradient and associated changes in initial plant productivity during secondary succession. Oecologia 139(3):454–458. doi:10.1007/s00442-004-1526-2

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galina Churkina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Churkina, G. (2012). Carbon Cycle of Urban Ecosystems. In: Lal, R., Augustin, B. (eds) Carbon Sequestration in Urban Ecosystems. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2366-5_16

Download citation

Publish with us

Policies and ethics