Skip to main content

Eddy Covariance Measurements over Wetlands

  • Chapter
  • First Online:

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

Wetland ecosystems can be classified according to various systems, one of which defines three major groups: (1) northern peatlands (with a total area of 350×106 ha), (2) freshwater swamps and marshes (204×106 ha), and (3) coastal wetlands (36×106 ha) (Mitsch et~al. 2009). Depending on the definition, wetlands cover 3–6% of the Earth’s land surface. This chapter concentrates on northern peatlands, which constitute a highly important component of the global biogeochemical cycling, as these boreal and arctic mires have accumulated about one-third of the global organic soil carbon

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alm J, Schulman L, Walden J, Nykänen H, Martikainen PJ, Silvola J (1999) Carbon balance of a boreal bog during a year with an exceptionally dry summer. Ecology 80:161–174

    Article  Google Scholar 

  • Arneth A, Kurbatova J, Kolle O, Shibistova O, Lloyd J, Vygodskaya NN, Schulze ED (2002) Comparative ecosystem-atmosphere exchange of energy and mass in a European Russian and a central Siberian bog II. Interseasonal and interannual variability of CO2 fluxes. Tellus 54B: 514–530

    Google Scholar 

  • Augustin J, Merbach W, Rogasik J (1998) Factors influencing nitrous oxide and methane emissions from minerotrophic fens in northeast Germany. Biol Fertil Soils 28:1–4

    Article  Google Scholar 

  • Aurela M, Tuovinen J-P, Laurila T (1998) Carbon dioxide exchange in a subarctic peatland ecosystem in northern Europe measured by eddy covariance technique. J Geophys Res 103:11289–11301

    Article  Google Scholar 

  • Aurela M, Laurila T, Tuovinen J-P (2002) Annual CO2 balance of a subarctic fen in northern Europe: importance of the wintertime efflux. J Geophys Res 107:4607. doi: 10.1029/2002JD002055

    Article  Google Scholar 

  • Aurela M, Laurila T, Tuovinen J-P (2004) The timing of snow melt controls the annual CO2 balance in a subarctic fen. Geophys Res Lett 31:L16119. doi:10.1029/2004GL020315

    Article  Google Scholar 

  • Aurela M, Riutta T, Laurila T, Tuovinen J-P, Vesala T, Tuittila E-S, Rinne J, Haapanala S, Laine J (2007) CO2 balance of a sedge fen in southern Finland – the influence of a drought period. Tellus 59B:826–837

    Google Scholar 

  • Aurela M, Lohila A, Tuovinen J-P, Hatakka J, Riutta T, Laurila T (2009) Carbon dioxide exchange on a northern boreal fen. Boreal Environ Res 14:699–710

    Google Scholar 

  • Barr JG, Fuentes JD, Engel V, Zieman JC (2009) Physiological responses of red mangroves to the climate in the Florida Everglades. J Geophys Res 114:G02008. doi:10.1029/2008JG000843

    Article  Google Scholar 

  • Barr JG, Engel V, Fuentes JD, Zieman JC, O’Halloran TL, Smith TJ III, Anderson GH (2010) Controls on mangrove forest-atmosphere carbon dioxide exchanges in western Everglades National Park. J Geophys Res 115:G02020. doi:10.1029/2009JG001186

    Article  Google Scholar 

  • Chojnicki BH, Urbaniak M, Józefczyk D, Augustin J, Olejnik J (2007) Measurements of gas and heat fluxes at Rzecin wetland. In: Okruszko T, Maltby E, Szatylolowicz J, Światek D, Kotowski W (eds) Wetlands: monitoring, modeling and management. Taylor & Francis Group, London, pp 125–131

    Google Scholar 

  • Christensen TR, Johansson T, Åkerman HJ, Mastepanov M, Malmer N, Friborg T, Crill P, Svensson BH (2004) Thawing sub-arctic permafrost: effects on vegetation and methane emissions. Geophys Res Lett 31:L04501. doi:10.1029/2003GL018680

    Article  Google Scholar 

  • Clymo RS, Turunen J, Tolonen K (1998) Carbon accumulation in peatland. Oikos 81:368–388

    Article  Google Scholar 

  • Corradi C, Kolle O, Walter K, Zimov SA, Schulze ED (2005) Carbon dioxide and methane exchange of a north-east Siberian tussock tundra. Glob Change Biol 11:1910–1925

    Google Scholar 

  • Coxon DS, Parkinson D (1987) Winter respiratory activity in aspen woodland forest floor litter and soils. Soil Biol Biochem 19:49–59

    Article  Google Scholar 

  • Coyne PI, Kelly JJ (1975) CO2 exchange in the Alaskan tundra: meteorological assessment by the aerodynamic method. J Appl Ecol 12:587–611

    Article  Google Scholar 

  • Dinsmore KJ, Billett MF, Skiba UM, Rees RM, Helfter C (2010) Role of the aquatic pathway in the carbon and greenhouse gas budgets of a peatland catchment. Glob Change Biol 16:2750–2762

    Article  Google Scholar 

  • Edwards GC, Neumann HH, den Hartog G, Thurtell GW, Kidd G (1994) Eddy correlation measurements of methane fluxes using a tunable diode laser at the Kinosheo Lake tower site during the Northern Wetlands Study (NOWES). J Geophys Res 99:1511–1517

    Article  Google Scholar 

  • Faist J, Capasso F, Sivco DL, Sirtori C, Hutchinson AL, Cho AY (1994) Quantum cascade laser. Science 264:553–556

    Article  Google Scholar 

  • Fan SM, Wofsy SC, Bakwin PS, Jacob DJ, Anderson SM, Kebabian PL, McManus JB, Kolb CE, Fitzjarrald DR (1992) Micrometeorological measurements of CH4 and CO2 exchange between the atmosphere and subarctic tundra. J Geophys Res 97:16627–16643

    Google Scholar 

  • Flanagan PW, Bunnell FL (1980) Microflora activities and decomposition. In: Brown J, Miller PC, Tieszen LL, Bunnell FL (eds) An arctic ecosystem: the coastal tundra at Barrow, Alaska. Dowden, Hutchinson & Ross, Inc., Stroudsburg, pp 291–334

    Google Scholar 

  • Frolking S, Roulet N, Fuglestvedt J (2006) How northern peatlands influence the Earth’s radiative budget: sustained methane emission versus sustained carbon sequestration. J Geophys Res 111:G01008. doi:10.1029/2005JG000091

    Article  Google Scholar 

  • Glenn AJ, Flanagan LB, Syed KH, Carlson PJ (2006) Comparison of net ecosystem CO2 exchange in two peatlands in western Canada with contrasting dominant vegetation, Sphagnum and Carex. Agric For Meteorol 140:115–135

    Article  Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon balance and probable responses to climatic warming. Ecol Appl 1:182–195

    Article  Google Scholar 

  • Goulden ML, Munger JW, Fan S-M, Daube BC, Wofsy SC (1996) Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy. Glob Change Biol 2:169–182

    Article  Google Scholar 

  • Griffis TJ, Rouse WR, Waddington JM (2000) Interannual variability of net ecosystem CO2 exchange at a subarctic fen. Glob Biogeochem Cycles 14:1109–1121

    Article  Google Scholar 

  • Harazono Y, Mano M, Miyata A, Zulueta RC, Oechel WC (2003) Inter-annual carbon dioxide uptake of a wet sedge tundra ecosystem in the Arctic. Tellus B 55:215–231

    Article  Google Scholar 

  • Hargreaves KJ, Fowler D, Pitcairn CER, Aurela M (2001) Annual methane emission from Finnish mire estimated from eddy covariance campaign measurements. Theor Appl Climatol 70: 203–213

    Article  Google Scholar 

  • Hendriks DMD, Dolman AJ, van der Molen MK, van Huissteden J (2008) A compact and stable eddy covariance set-up for methane measurements using off-axis integrated cavity output spectroscopy. Atmos Chem Phys 8:431–443

    Article  Google Scholar 

  • Hirano T, Segah H, Harada T, Limin S, June T, Hirata R, Osaki M (2007) Carbon dioxide balance of a tropical peat swamp forest in Kalimantan, Indonesia. Glob Change Biol 13:412–425

    Article  Google Scholar 

  • Hooijer A, Silvius M, Wosten H, Page S (2006) PEAT-CO2, Assessment of CO2 emissions from drained peatlands in SE Asia. Delft Hydraulics report Q3943

    Google Scholar 

  • Huemmrich KF, Black TA, Jarvis PG, McCaughey J, Hall FG (1999) High temporal resolution NDVI phenology from micrometeorological radiation sensors. J Geophys Res 104:27935–27944

    Article  Google Scholar 

  • Jackowicz-Korczyński M, Christensen TR, Bäckstrand K, Crill P, Friborg T, Mastepanov M, Ström L (2010) Annual cycle of methane emission from a subarctic peatland. J Geophys Res 115:G02009. doi:10.1029/2008jg000913

    Article  Google Scholar 

  • Joiner DW, Lafleur PM, McCaughey JH, Bartlett PA (1999) Interannual variability in carbon dioxide exchanges at a boreal wetland in the BOREAS northern study area. J Geophys Res 104:27663–27672

    Article  Google Scholar 

  • Kroon PS, Hensen A, Jonker HJJ, Zahniser MS, van ’t Veen WH, Vermeulen AT (2007) Suitability of quantum cascade laser spectrometry for CH4 and N2O eddy covariance measurements. Biogeosciences 4:715–728

    Article  Google Scholar 

  • Kuhry P, Turunen J (2006) The postglacial development of boreal and subarctic peatlands. In: Wieder RK, Vitt DH (eds) Boreal peatland ecosystems. Springer, Berlin, pp 25–46

    Chapter  Google Scholar 

  • Kutzbach L, Wille C, Pfeiffer E-M (2007) The exchange of carbon dioxide between wet arctic tundra and the atmosphere at the Lena River Delta, Northern Siberia. Biogeosciences 4: 869–890

    Article  Google Scholar 

  • Kwon H-J, Oechel WC, Zulueta RC, Hastings SJ (2006) Effects of climate variability on carbon sequestration among adjacent wet sedge tundra and moist tussock tundra ecosystems. J Geophys Res 111:G03014. doi:10.1029/2005JG000036

    Article  Google Scholar 

  • Lafleur PM, Roulet NT, Admiral SW (2001) Annual cycle of CO2 exchange at a bog peatland. J Geophys Res 106:3071–3081

    Article  Google Scholar 

  • Lafleur PM, Roulet NT, Bubier JL, Frolking S, Moore TR (2003) Interannual variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bog. Glob Biogeochem Cycles 17:1036. doi:10.1029/2002GB001983

    Article  Google Scholar 

  • Laine A, Sottocornola M, Kiely G, Byrne KA, Wilson D, Tuittila E-S (2006) Estimating net ecosystem exchange in a patterned ecosystem: example from blanket bog. Agric For Meteorol 138:231–243

    Article  Google Scholar 

  • Laurila T, Asmi E, Aurela M, Uttal T, Makshtas A, Reshetnikov A, Ivakhov V, Hatakka J, Lihavainen H, Hyvärinen A-P, Viisanen Y, Laaksonen A, Taalas P (2010) Long-term measurements of greenhouse gases and aerosols at Siberian Arctic site, Tiksi. In: Abstracts of the international polar year conference, June 2010, Oslo. http://ipy-osc.no/abstract/382008

  • Limpens J, Berendse F, Blodau C, Canadell JG, Freeman C, Holden J, Roulet N, Rydin H, Schaepman-Strub G (2008) Peatlands and the carbon cycle: from local processes to global implications – a synthesis. Biogeosciences 5:1475–1491

    Article  Google Scholar 

  • Lohila A, Laurila T, Aro L, Aurela M, Tuovinen J-P, Laine J, Kolari P, Minkkinen K (2007) Carbon dioxide exchange above a 30-year-old Scots pine plantation established on organic soil cropland. Boreal Environ Res 12:141–157

    Google Scholar 

  • Lohila A, Minkkinen K, Laine J, Savolainen I, Tuovinen J-P, Korhonen L, Laurila T, Tietäväinen H, Laaksonen A (2010) Forestation of boreal peatlands: impacts of changing albedo and greenhouse gas fluxes on radiative forcing. J Geophys Res 115:G04011. doi:10.1029/2010JG001327

    Article  Google Scholar 

  • Lund M, Lindroth A, Christensen TR, Ström L (2007) Annual CO2 balance of a temperate bog. Tellus 59B:804–811

    Google Scholar 

  • Maanavilja L, Riutta T, Aurela M, Pulkkinen M, Laurila T, Tuittila E-S (2011) Spatial variation in CO2 exchange at a northern aapa mire. Biogeochemistry 104:325–345. doi:10.1007/s10533-010-9505-7

    Article  Google Scholar 

  • Mäkiranta P, Hytönen J, Aro L, Maljanen M, Pihlatie M, Potila H, Shurpali N, Laine J, Lohila A, Martikainen PJ, Minkkinen K (2007) Soil greenhouse gas emissions from afforested organic soil croplands and cutaway peatlands. Boreal Environ Res 12:159–175

    Google Scholar 

  • Massman WJ, Sommerfield RA, Mosier AR, Zeller KF, Hehn TJ, Rochelle SG (1997) A model investigation of turbulence-driven pressure pumping effects on the rate of diffusion of CO2, N2O, and CH4 through layered snowpacks. J Geophys Res 102:18851–18863

    Article  Google Scholar 

  • Mitsch WJ, Gosselink JG, Anderson CJ, Zhang L (2009) Wetland ecosystems. Wiley, Hoboken, 295 pp

    Google Scholar 

  • Moore TR, Knowles R (1990) Methane emissions from fen, bog and swamp peatlands in Quebec. Biogeochemistry 11:45–61

    Article  Google Scholar 

  • Neumann HH, den Hartog G, King KM, Chipanshi AC (1994) Carbon dioxide fluxes over a raised open bog at the Kinosheo Lake tower site during the Northern Wetlands Study (NOWES). J Geophys Res 99:1529–1538

    Article  Google Scholar 

  • Nieveen JP, Jacobs CMJ, Jacobs AFG (1998) Diurnal and seasonal variation of carbon dioxide exchange from a former true raised bog. Glob Change Biol 4:823–834

    Article  Google Scholar 

  • Nilsson M, Sagerfors J, Buffam I, Laudon H, Eriksson T, Grelle A, Klemedtsson L, Weslien P, Lindroth A (2008) Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire – a significant sink after accounting for all C fluxes. Glob Change Biol 14:2317–2332

    Article  Google Scholar 

  • Ochsner TE, Sauer TJ, Horton R (2006) Field tests of the soil heat flux plate method and some alternatives. Agronomy J 98:1005–1014

    Article  Google Scholar 

  • Regina K, Nykänen H, Silvola J, Martikainen PJ (1996) Fluxes of nitrous oxide from boreal peatlands as affected by peatland type, water table level and nitrification capacity. Biogeochemistry 35:401–418

    Article  Google Scholar 

  • Repo ME, Susiluoto S, Lind SE, Jokinen S, Elsakov V, Biasi C, Virtanen T, Martikainen PJ (2009) Large N2O emissions from cryoturbated peat soil in tundra. Nat Geosci 2:189–192

    Article  Google Scholar 

  • Rinne J, Riutta T, Pihlatie M, Aurela M, Haapanala S, Tuovinen J-P, Tuittila E-S, Vesala T (2007) Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique. Tellus 59B:449–457

    Google Scholar 

  • Riutta T, Laine J, Aurela M, Rinne J, Vesala T, Laurila T, Haapanala S, Pihlatie M, Tuittila E-S (2007) Spatial variation in plant community functions regulates carbon gas dynamics in a boreal fen ecosystem. Tellus 59B:838–852

    Google Scholar 

  • Sachs T, Wille C, Boike J, Kutzbach L (2008) Environmental controls on ecosystem-scale CH4 emission from polygonal tundra Lena river delta, Siberia. J Geophys Res 113:G00A03. doi:10.1029/2007JG000505

    Article  Google Scholar 

  • Sagerfors J, Lindroth A, Grelle A, Klemedtsson L, Weslien P, Nilsson M (2008) Annual CO2 exchange between a nutrient-poor, minerotrophic, boreal mire and the atmosphere. J Geophys Res 113:G01001. doi:10.1029/2006JG000306

    Article  Google Scholar 

  • Saunders MJ, Jones MB, Kansiime F (2007) Carbon and water cycles in tropical papyrus wetlands. Wetl Ecol Manage 15:489–498

    Article  Google Scholar 

  • Schulze ED, Valentini R, Sanz MJ (2002) The long way from Kyoto to Marrakesh: implications of the Kyoto protocol negotiations for global ecology. Glob Change Biol 8:1–14

    Article  Google Scholar 

  • Shurpali NJ, Verma SB, Kim J (1995) Carbon dioxide exchange in a peatland ecosystem. J Geophys Res 100:14319–14326

    Article  Google Scholar 

  • Soegaard H, Nordstroem C (1999) Carbon dioxide exchange in a high-arctic fen estimated by eddy covariance measurements and modelling. Glob Change Biol 5:547–562

    Article  Google Scholar 

  • Sottocornola M, Kiely G (2005) An Atlantic blanket bog is a modest CO2 sink. Geophys Res Lett 32:L23804. doi:10.1029/2005GLO24731

    Article  Google Scholar 

  • Suyker AE, Verma SB, Arkebauer TJ (1997) Season-long measurement of carbon dioxide exchange in a boreal fen. J Geophys Res 102:29021–29028

    Article  Google Scholar 

  • Syed KH, Flanagan LB, Carlson P, Glenn A, Gaalen DEV (2006) Environmental control of net ecosystem CO2 exchange in a treed, moderately rich fen in northern Alberta. Agric For Meteorol 140:97–114

    Article  Google Scholar 

  • Turunen J, Tomppo E, Tolonen K, Reinikainen A (2002) Estimating carbon accumulation rates of undrained mires in Finland – application to boreal and subarctic regions. Holocene 12:79–90

    Article  Google Scholar 

  • van der Molen MK, van Huissteden J, Parmentier FJW, Petrescu AMR, Dolman AJ, Maximov TC, Kononov AV, Karsanaev SV, Suzdalov DA (2007) The growing season greenhouse gas balance of a continental tundra site in the Indigirka lowlands, NE Siberia. Biogeosciences 4:985–1003

    Article  Google Scholar 

  • Verma SB, Ullman FG, Billesbach DP, Clement RJ, Kim J (1992) Micrometeorogical measurements of methane flux in a northern peatland ecosystem. Bound Layer Meteorol 58:289–304

    Article  Google Scholar 

  • Vourlitis GL, Oechel WC (1997) Landscape-scale CO2, water vapour, and energy flux of moist-wet coastal tundra ecosystems over two growing seasons. J Ecol 85:575–590

    Article  Google Scholar 

  • Vourlitis GL, Oechel WC (1999) Eddy covariance measurements of net CO2 flux and energy fluxes of an Alaskan tussock tundra ecosystem. Ecology 80:686–701

    Article  Google Scholar 

  • Yan Y, Zhao B, Chen JQ, Guo HQ, Gu YJ, Wu QH, Li B (2008) Closing the carbon budget of estuarine wetlands with towerbased measurements and MODIS time series. Glob Change Biol 14:1690–1702

    Article  Google Scholar 

  • Zahniser MS, Nelson DD, McManus JB, Kebabian PK (1995) Measurement of trace gas fluxes using tunable diode laser spectroscopy. Philos Trans R Soc A 351:371–382

    Article  Google Scholar 

  • Zimov SA, Zimova GM, Daviodov SP, Daviodova AI, Voropaev YV, Voropaeva ZV, Prosiannikov SF, Prosiannikova OV, Semiletova IV, Semiletov IP (1993) Winter biotic activity and production of CO2 in Siberian soils: a factor in the greenhouse effect. J Geophys Res 98:5017–5023

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuomas Laurila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Laurila, T., Aurela, M., Tuovinen, JP. (2012). Eddy Covariance Measurements over Wetlands. In: Aubinet, M., Vesala, T., Papale, D. (eds) Eddy Covariance. Springer Atmospheric Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2351-1_14

Download citation

Publish with us

Policies and ethics