Skip to main content

Introduction

  • Chapter

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 34))

Abstract

Portable communication and infotainment devices are a major driver to explore ways to operate electronic circuits in an energy efficient manner. Besides enabling longer operating time by higher energy storage densities within batteries and more efficient display technologies, the consumption within electronic circuits has to be reduced. A brief survey shows the history of reversible computation and Adiabatic Logic and explains why Adiabatic Logic outperforms the traditional static CMOS when ultra-low energy dissipation is the main focus.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  1. V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, F. Baez, Reducing power in high-performance microprocessors, in Proceedings of the 35th Annual Design Automation Conference. San Francisco, CA (ACM, New York, 1998), pp. 732–737

    Chapter  Google Scholar 

  2. R.K. Krishnamurthy, A. Alvandpour, S. Mathew, M. Anders, V. De, S. Borkar, High-performance, low-power, and leakage-tolerance challenges for sub-70nm microprocessor circuits, in Proceedings of the 28th European Solid-State Circuits Conference, 2002, pp. 315–321

    Google Scholar 

  3. R.K. Krishnamurthy, S.K. Mathew, M.A. Anders, S.K. Hsu, H. Kaul, S. Borkar, High-performance and low-voltage challenges for sub-45nm microprocessor circuits, in 6th International Conference on ASIC, vol. 1, 2005, pp. 283–286

    Google Scholar 

  4. D. Pham, M. Alexander, A. Arizpe, B. Burgess, C. Dietz, L. Eisen, R. El-Kareh, J. Eno, S. Gary, G. Gerosa, B. Goins, J. Golab, R. Golla, R. Harris, B. Ho, Y.-W. Ho, K. Hoover, C. Hunter, P. Ippolito, R. Jessani, J. Kahle, K.R. Kishore, B. Kuttanna, S. Litch, S. Mallick, T. Ngo, D. Ogden, C. Olson, S.-H. Park, R. Patel, M. Pham, J. Prado, S. Reeve, R. Reininger, H. Sanchez, M. Schiffli, J. Slaton, G. Thuraisingham, K. Torku, C. Tran, N. Vanderschaaf, P. Voldstad, A 3.0 W 75SPECint92 85SPECfp92 superscalar RISC microprocessor, in IEEE International Solid-State Circuits Conference, 1994, pp. 212–213

    Google Scholar 

  5. L. Benini, P. Siegel, G. De Micheli, Saving power by synthesizing gated clocks for sequential circuits. IEEE Design & Test of Computers 11(4), 32–41 (1994)

    Article  Google Scholar 

  6. W.P. Maly, Integrated circuit, device, system, and method of fabrication. US Patent PCT/US2007/011630, 2007

    Google Scholar 

  7. W. Maly, Y.-W. Lin, M. Marek-Sadowska, OPC-Free and Minimally Irregular IC Design Style, in Proc. 44th ACM/IEEE Design Automation Conference DAC ’07, 4–8 June 2007, pp. 954–957

    Chapter  Google Scholar 

  8. W. Maly, A. Pfitzner, Complementary vertical slit field effect transistors, Technical Report No. CSSI 08-02, CSSI, Carnegie Mellon University, January 2008

    Google Scholar 

  9. E. Amirante, Adiabatic Logic in Sub-quartermicron CMOS Technologies. Selected Topics of Electronics and Micromechatronics, vol. 13 (Shaker, Aachen, 2004)

    Google Scholar 

  10. J. Fischer, Adiabatische Schaltungen und Systeme in Deep-Submicron-CMOS-Technologien. Selected Topics of Electronics and Micromechatronics, vol. 24 (Shaker, Aachen, 2006)

    Google Scholar 

  11. E. Amirante, J. Fischer, M. Lang, A. Bargagli-Stoffi, J. Berthold, C. Heer, D. Schmitt-Landsiedel, An ultra low-power adiabatic adder embedded in a standard 0.13 μm CMOS environment, in Proceedings of the 29th European Solid-State Circuits Conference, 2003, pp. 599–602

    Chapter  Google Scholar 

  12. R. Landauer, Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  13. C.H. Bennett, Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)

    Article  MATH  Google Scholar 

  14. E. Fredkin, T. Toffoli, Conservative logic. Int. J. Theor. Phys. 21(3–4), 219–253 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. J.S. Hall, An electroid switching model for reversible computer architectures, in Workshop on Physics and Computation, 1992, pp. 237–247

    Chapter  Google Scholar 

  16. J.G. Koller, W.C. Athas, Adiabatic switching, low energy computing, and the physics of storing and erasing information, in Proc. Workshop on Physics and Computation, 1992, pp. 267–270

    Chapter  Google Scholar 

  17. A. Kramer, J.S. Denker, B. Flower, J. Moroney, 2nd order adiabatic computation with 2N-2P and 2N-2N2P logic circuits, in Proceedings of the International Symposium on Low Power Design (ACM, New York, 1995), pp. 191–196

    Google Scholar 

  18. A. Vetuli, S.D. Pascoli, L.M. Reyneri, Positive feedback in adiabatic logic. Electron. Lett. 32(20), 1867–1869 (1996)

    Article  Google Scholar 

  19. Y. Moon, D.-K. Jeong, An efficient charge recovery logic circuit. IEEE J. Solid-State Circuits 31(4), 514–522 (1996)

    Article  Google Scholar 

  20. V.G. Oklobdzija, D. Maksimovic, F. Lin, Pass-transistor adiabatic logic using single power-clock supply. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 44(10), 842–846 (1997)

    Article  Google Scholar 

  21. D. Maksimovic, V.G. Oklobdzija, B. Nikolic, K.W. Current, Clocked CMOS adiabatic logic with integrated single-phase power-clock supply: experimental results, in Proc. International Symposium on Low Power Electronics and Design, 1997, pp. 323–327

    Chapter  Google Scholar 

  22. S. Kim, M.C. Papaefthymiou, True single-phase energy-recovering logic for low-power, high-speed VLSI, in Proc. International Symposium on Low Power Electronics and Design, 1998, pp. 167–172

    Google Scholar 

  23. C. Kim, S.-M. Yoo, S.-M.S. Kang, Low-power adiabatic computing with NMOS energy recovery logic. Electron. Lett. 36(16), 1349–1350 (2000)

    Article  Google Scholar 

  24. H. Jianping, C. Lizhang, L. Xiao, A new type of low-power adiabatic circuit with complementary pass-transistor logic, in 5th International Conference on ASIC, vol. 2, 2003, pp. 1235–1238

    Google Scholar 

  25. V.S. Sathe, M.C. Papaefthymiou, C.H. Ziesler, A GHz-class charge recovery logic, in Proc. International Symposium on Low Power Electronics and Design, 2005, pp. 91–94

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Teichmann .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Teichmann, P. (2012). Introduction. In: Adiabatic Logic. Springer Series in Advanced Microelectronics, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2345-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2345-0_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2344-3

  • Online ISBN: 978-94-007-2345-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics