Skip to main content

The Evolution of Learning to Communicate: Avian Model for the Missing Link

  • Chapter
  • First Online:
  • 1644 Accesses

Part of the book series: Biosemiotics ((BSEM,volume 6))

Abstract

Exclusively primate-centric models for the study of the evolution of communication, although reasonable considering the close phylogenetic relationships between present day human and nonhuman primates, overlook parallel or convergent evolution and the possibility that birds—with their advanced cognitive and communicative abilities—can provide models for the evolution of communication, particularly for vocal learning. Through similar evolutionary pressures and parallel exploitation of ecological niches, similar communicative abilities likely evolved, and birds are among the few nonhuman species to learn their vocal communication system. Even the neuroanatomical structures subserving vocal behavior in birds and humans are now evaluated for similarity. Thus, I suggest that examining avian subjects, particularly their learning and use of various vocal systems, will shed light on the evolution of learned vocal communication.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Critical rearing experiments have yet to test claims for some form of vocal dialect learning in apes (Crockford, Herbinger, Vigilant, & Boesch, 2004) and marmosets (de la Torre & Snowdon 2009).

  2. 2.

    A similar proposal exists for birds (Williams & Nottebohm, 1985), but more on that later.

  3. 3.

    Recent studies show that various language-related functions (e.g., mapping of auditory sound representations onto motor representations for producing speech; mapping speech sounds onto word concepts) may require parallel processing of widely distributed brain areas (e.g., Holt & Lotto, 2008, Poeppel & Monahan, 2008), but these may also be tied to gesture recognition.

  4. 4.

    We can, of course, draw inferences about brain morphology of early hominins and their descendents from endocasts (note Holloway, Sherwood, Hof, & Rilling, 2009), but such data cannot provide conclusive information concerning brain structures and their specific interconnections.

  5. 5.

    For example: Studies by Baptista (1983, 1988) and his colleagues on white-crowned sparrows showed that the song-learning period described by Marler (1970) for birds that were tape-tutored in social isolation could be doubled if the birds were exposed to live interacting tutors.

  6. 6.

    Other features of the song have also changed over the years (Kroodsma, pers. comm., September 2005), but the change in frequency is the most obvious (Kroodsma, 2005).

  7. 7.

    The bellbird is endangered, but conceivably data might be obtained in the future from captive birds in a noninvasive manner.

References

  • Arbib, M. A. (2005). From monkey-like action recognition to human language: An evolutionary framework for neurolinguistics. Behavioral & Brain Sciences, 28, 105–167.

    Google Scholar 

  • Arbib, M. A. (2008). From grasp to language: Embodied concepts and the challenge of abstraction. Journal of Physiology-Paris, 102, 4–20.

    Google Scholar 

  • Arnold, K., & Zuberbühler, K. (2006). Semantic combinations of primate calls. Nature, 441, 303.

    PubMed  CAS  Google Scholar 

  • Baldissera, F., Cavallari, P., Craighero, L., & Fadiga, L. (2001). Modulation of spinal excitability during observation of hand actions in humans. European Journal of Neuroscience, 13, 190–194.

    PubMed  CAS  Google Scholar 

  • Baptista, L. F. (1983). Song learning. In A. H. Brush & G. A. Clark, Jr. (Eds.), Perspectives in ornithology (pp. 500–506). Cambridge: Cambridge University Press.

    Google Scholar 

  • Baptista, L. F. (1988). Song learning in white-crowned sparrows (Zonotrichia leucophrys): Sensitive phases and stimulus filtering revisited. Proceedings of the 100th Deutsche Ornithologische Gesellschaft: Current topics in avian biology, Bonn.

    Google Scholar 

  • Bauer, E. E., Coleman, J. J., Roberts, T. F., Roy, A., Prather, J. F., & Mooney, R. (2008). A synaptic basis for auditory-vocal integration in the songbird. Journal of Neuroscience, 28, 1509–1522.

    PubMed  CAS  Google Scholar 

  • Bickerton, D. (2003). Symbol and structure: A comprehensive framework for language evolution. In M. H. Christiansen & S. Kirby (Eds.), Language evolution (pp. 77–93). Oxford: Oxford.

    Google Scholar 

  • Bickerton, D. (2010). Adam’s tongue. New York: Hill and Wang.

    Google Scholar 

  • Byers B. E., & Kroodsma, D. E. (1992), Development of two song categories by chestnut-sided warblers. Animal Behaviour, 44, 799–810.

    Google Scholar 

  • Carr, C. E., & Soares, D. (2002). Evolutionary convergence and shared computational principles in the auditory system. Brain, Behavior & Evolution, 59, 294–311.

    CAS  Google Scholar 

  • Chaminade, T., Meary, D., Orliaguet, J.-P., & Decety, J. (2001). Is perceptual anticipation a motor simulation? A PET study. Brain Imaging, 12, 3669–3674.

    CAS  Google Scholar 

  • Cheney, D. L., & Seyfarth, R. M. (1990). How monkeys see the world. Chicago: University of Chicago Press.

    Google Scholar 

  • Corballis, M. C. (1989). Laterality and human evolution. Psychological Review, 96, 492–505.

    PubMed  CAS  Google Scholar 

  • Corballis, M. C. (1991). The lopsided ape: evolution of the generative mind. Oxford: Oxford.

    Google Scholar 

  • Corballis, M. C. (2003). From mouth to hand: Gesture, speech, and the evolution of right-handedness. Behavioral & Brain Sciences, 26, 199–260.

    Google Scholar 

  • Corballis, M. C. (2008). Of mice and men—and lopsided birds. Cortex, 44, 3–7.

    PubMed  Google Scholar 

  • Crockford, C., Herbinger, I., Vigilant, L., & Boesch, C. (2004). Wild chimpanzees produce group-specific calls: A case for vocal learning? Ethology, 110, 221–243.

    Google Scholar 

  • Deacon, T. W. (1992), Brain-language coevolution. In J. A. Hawkins & M. Gel-Man (Eds.), The evolution of human languages (Vol. 10, pp. 49–83). Redwood City, CA: Addison-Wesley.

    Google Scholar 

  • Deacon, T. W. (1997). The symbolic species: The co-evolution of language and the brain. New York: Norton.

    Google Scholar 

  • De Kort, S. R., & ten Cate, C. (2001). Response to interspecific vocalizations is affected by degree of phylogenetic relatedness in Streptopelia doves. Animal Behaviour, 61, 239–247.

    PubMed  Google Scholar 

  • de la Torre, S., & Snowdon, C. T. (2009). Dialects in pygmy marmosets? Population variation in call structure. American Journal of Primatology, 71, 1–10.

    Google Scholar 

  • Dent, M. L., Brittan-Powell, E. F., Dooling, R. J., & Pierce, A. (1997). Perception of synthetic /ba/-/wa/ speech continuum by budgerigars (Melopsittacus undulatus). Journal of the Acoustical Society of America, 102, 1891–1897.

    PubMed  CAS  Google Scholar 

  • Dinstein, I., Hasson, U., Rubin, N., & Heeger, D. J. (2007). Brain areas selective for both observed and executed movements. Journal of Neurophysiology, 98, 1415–1427.

    PubMed  Google Scholar 

  • Dinstein, I., Thomas, M., Behmann, M., & Heeger, D. J. (2008). A mirror up to nature. Current Biology, 18, R13–R18.

    PubMed  CAS  Google Scholar 

  • Emery, N. J., & Clayton, N. S. (2004). The mentality of crows: convergent evolution of intelligence in corvids and apes. Science, 306, 1903–1907.

    PubMed  CAS  Google Scholar 

  • Evans, C. S., Evans, L., & Marler, P. (1993). On the meaning of alarm calls: Functional reference in an avian vocal system. Animal Behaviour, 46, 23–38.

    Google Scholar 

  • Fadiga, L., Fogassi, L., Pavesi, G., Rizzolatti, G. (1995). Motor facilitation during action observation: A magnetic simulation study. Journal of Neurophysiology, 73, 2608–2611.

    PubMed  CAS  Google Scholar 

  • Farries, M. A. (2001). The oscine song system considered in the context of the avian brain: Lessons learned from comparative neurobiology. Brain, Behavior, & Evolution, 58, 80–100.

    CAS  Google Scholar 

  • Farries, M. A. (2004). The avian song system in comparative perspective. Annals of the New York Academy of Sciences, 1016, 61–76.

    PubMed  Google Scholar 

  • Feenders, G., Liedvogel, M., Rivas, J., Zapka, M., Horita, H., Hara, E., et al. (2008). Molecular mapping of movement-associated areas in the avian brain: A motor theory for vocal learning. PLoS One, 3(3): e1768. doi:10.1371/journal.pone.0001768

    PubMed  Google Scholar 

  • Fitch, W. T., & Mietchen, D. (in press) Convergence and deep homology in the evolution of spoken language. In J. J. Bolhuis & M. Everaet (Eds.), Birdsong, speech, and language: Converging mechanisms. Cambridge, MA: MIT Press.

    Google Scholar 

  • Fogassi, L., & Ferrari, P. F. (2004). Mirror neurons, gestures, and language evolution. Interaction Studies, 5, 345–363.

    Google Scholar 

  • Fogassi, L., & Gallese, V. (2002). The neural correlates of action understanding in non-human primates. In M. I. Stamenov (Ed.), Mirror neurons and the evolution of brain and language (pp. 21–43). Philadelphia, PA: John Benjamins.

    Google Scholar 

  • Gallese, V., & Lakoff, G. (2005). The brain’s concepts: The role of the sensory-motor system in reason and language. Cognitive Neuropsychology, 22, 455–479.

    PubMed  Google Scholar 

  • Gardner, R. A., & Gardner, B. T. (1969). Teaching sign language to a chimpanzee. Science, 165, 664–672.

    PubMed  CAS  Google Scholar 

  • Gentner, T. Q., Fenn, K. J., Margoliash, D., & Nusbaum, H. C. (2006). Recursive syntactic pattern learning by songbirds. Nature, 440, 1204–1207.

    PubMed  CAS  Google Scholar 

  • Greenfield, P. M. (1991). Language, tools and brain: The ontogeny and phylogeny of hierarchically organized sequential behavior. Behavioral & Brain Sciences, 14, 531–595.

    Google Scholar 

  • Greenfield, P. M., & Savage-Rumbaugh, E. S. (1990). Grammatical combination in Pan paniscus: Processes of learning and invention in the evolution and development of language. In S. T. Parker & K. R. Gibson (Eds.), ‘Languageand intelligence in monkeys and apes: Comparative developmental perspectives (pp. 540–578). New York: Cambridge.

    Google Scholar 

  • Greenfield, P. M., & Savage-Rumbaugh, E. S. (1991). Imitation, grammatical development, and the invention of protogrammar by an ape. In N. A. Krasnegor, D. M. Rumbaugh, R. L. Schiefelbusch, & M. Studdert-Kennedy (Eds.), Biological and behavioral determinants of language development (pp. 235–258). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Greenfield, P. M., Nelson, K., & Salzman, E. (1972). The development of rulebound strategies for manipulating seriated nesting cups: A parallel between action and grammar. Cognitive Psychology, 3, 291–310.

    Google Scholar 

  • Hewes, G. W. (1973). Primate communication and the gestural origin of language. Current Anthropology, 33, 65–84.

    Google Scholar 

  • Holloway, R. L., Sherwood, C. C., Hof, P. R., & Rilling, J. K. (2009). Evolution of the brain in humans—paleoneurology. In M. D. Binder, N. Hirokawa, U. Windhorst, & M. C. Hirsch (Eds.), Encyclopedia of neuroscience, Part 5 (pp. 1326–1334). New York: Springer.

    Google Scholar 

  • Holt, L. L., & Lotto, A. J. (2008). Speech perception withini an auditory cognitive science framework. Current Directions in Psychological Science, 17, 42–46.

    PubMed  Google Scholar 

  • Homberger, D. G. (1986). The lingual apparatus of the African grey parrot, Psittacus erithacus Linne (Aves: Psittacidae) Description and theoretical mechanical analysis. Ornithological Monographs, No. 39. Washington, DC: The American Ornithologists’ Union.

    Google Scholar 

  • Hopkins, W. D., & Cantalupo, C. (2008). Theoretical speculations on the evolutionary origins of hemispheric specialization. Current Directions in Psychological Science, 17, 233–237.

    Google Scholar 

  • Jarvis, E. (2004). Learned birdsong and the neurobiology of human language. Annals of the New York Academy of Sciences, 1016, 749–777.

    PubMed  Google Scholar 

  • Jarvis, J. D., Güntürkün, O., Bruce, L., Csillag, A., Karten, H., Kuenzel, W., et al. (2005). Avian brains and a new understanding of vertebrate evolution. Nature Reviews Neuroscience, 6, 151–159.

    PubMed  CAS  Google Scholar 

  • Jarvis, J. D., & Mello, C. V. (2000). Molecular mapping of brain areas involved in parrot vocal communication. Journal of Comparative Neurology, 419, 1–31.

    PubMed  CAS  Google Scholar 

  • Johnson Pynn, J., Fragaszy, D. M., Hirsh, E. M., Brakke, K. E., & Greenfield, P. M. (1999). Strategies used to combine seriated cups by chimpanzees (Pan troglodytes), bonobos (Pan paniscus), and capuchins (Cebus apella). Journal of Comparative Psychology, 113, 137–48.

    PubMed  CAS  Google Scholar 

  • Jürgens, U. (1998). Neuronal control of mammalian vocalization, with special reference to the squirrel monkey. Naturwissenschaften, 85, 376–388.

    PubMed  Google Scholar 

  • Keller, G. B., & Hahnlose, R. H. R. (2009). Neural processing of auditory feedback during vocal practice in a songbird. Nature, 457, 187–190.

    PubMed  CAS  Google Scholar 

  • Kluender, K. R., Diehl, R. L., & Killeen, P. R. (1987). Japanese quail can learn phonetic categories. Science, 237, 1195–1197.

    PubMed  CAS  Google Scholar 

  • Kroodsma, D. E. (1979). Vocal dueling among male marsh wrens: Evidence for ritualized expressions of dominance/subordinance. Auk, 96, 506–515.

    Google Scholar 

  • Kroodsma, D. E. (1988). Song types and their use: Developmental flexibility of the male blue-winged warbler. Ethology, 79, 235–247.

    Google Scholar 

  • Kroodsma, D. E. (2005). The singing life of birds (pp. 96–101). New York: Houghton Mifflin.

    Google Scholar 

  • Kroodsma, D. E., & Konishi, M. (1991). A suboscine bird (Eastern phoebe, Sayornis phoebe) develops normal song without auditory feedback. Animal Behaviour, 42, 477–487.

    Google Scholar 

  • Kuhl, P. K. (1981). Discrimination of speech by nonhuman animals: Basic auditory sensitivities conducive to the perception of speech-sound categories. Journal of the Acoustical Society of America, 70, 340–349.

    Google Scholar 

  • Kuhl, P., Tsao, F. M., & Liu, H. M. (2003). Foreign-language experience in infancy: Effects of short-term exposure and social interaction on phonetic learning. Proceedings of the National Academy of Sciences, USA, 100, 9096–9101.

    CAS  Google Scholar 

  • Leger, D. W. (2005). First documentation of combinatorial song syntax in a suboscine passerine species. Condor, 107, 765–774.

    Google Scholar 

  • Leonard, M. L., & Picman, J. (1987). The adaptive significance of multiple nest building by male marsh wrens. Animal Behaviour, 35, 271–77.

    Google Scholar 

  • Liberman, A. M., & Mattingly, I. G. (1985). The motor theory of speech perception revised. Cognition, 21, 1–36.

    PubMed  CAS  Google Scholar 

  • Lieberman, P. (1991). Preadaptation, natural selection, and function. Language & Communication, 11, 63–65.

    CAS  Google Scholar 

  • Lieberman, P. (2000). Human language and our reptilian brain. Cambridge, MA: Harvard.

    Google Scholar 

  • Locke, J. L. (1997). A theory of neurolinguistic development. Brain and Language, 58, 265–326.

    PubMed  CAS  Google Scholar 

  • Lotto, A. J., Kluender, K. R., & Holt, L. L. (1997). Perceptual compensation for coarticulation by Japanese quail (Coturnix coturnix japonica). Journal of the Acoustical Society of America, 102, 1134–1140.

    PubMed  CAS  Google Scholar 

  • Margoliash, D. (2003). Offline learning and the role of autogenous speech: New suggestions from birdsong research. Speech Communication, 41, 165–178.

    Google Scholar 

  • Marler, P. (1970). A comparative approach to vocal learning: Song development in white crowned sparrows. Journal of Comparative & Physiological Psychology, 71, 1–25.

    Google Scholar 

  • Marler, P. (1973). Speech development and bird song: Are there any parallels? In G. A. Miller (Ed.), Communication, language, and meaning. (pp. 73–83). New York: Basic Books.

    Google Scholar 

  • Medina, L., & Reiner, A. (2000). Do birds possess homologues of mammalian primary visual, somatosensory and motor cortices? Trends in Neurosciences, 23, 1–12.

    PubMed  CAS  Google Scholar 

  • Nottebohm, F. (1970). Ontogeny of bird song. Science, 167, 950–956.

    PubMed  CAS  Google Scholar 

  • Nottebohm, F. (1980). Brain pathways for vocal learning in birds: A review of the first ten years. Progress in Psychobiology and Physiological Psychology, 9, 85–124.

    Google Scholar 

  • Patterson, D. K., & Pepperberg, I. M. (1994). A comparative study of human and parrot phonation: Acoustic and articulatory correlates of vowels. Journal of the Acoustical Society of America, 96, 634–648.

    PubMed  CAS  Google Scholar 

  • Patterson, D. K., & Pepperberg, I. M. (1998). A comparative study of human and Grey parrot phonation: Acoustic and articulatory correlates of stop consonants. Journal of the Acoustical Society of America, 103, 2197–2213.

    PubMed  CAS  Google Scholar 

  • Pepperberg, I. M. (1999). The Alex studies. Cambridge, MA: Harvard University Press

    Google Scholar 

  • Pepperberg, I. M. (2004). The evolution of communication from an avian perspective. In D. K. Oller & U. Griebel (Eds.), Evolution of communication systems: A comparative approach (pp. 171–192). Cambridge, MA: MIT Press.

    Google Scholar 

  • Pepperberg, I. M. (2005a). Evolution of language from an avian perspective. In M. Tallerman (Ed.), Language origins: Perspectives on evolution (pp. 239–261). Oxford: Oxford.

    Google Scholar 

  • Pepperberg, I. M. (2005b). Insights into vocal imitation in Grey parrots (Psittacus erithacus). In S. Hurley & N. Chader (Eds.), Perspectives on imitation: From mirror neurons to memes (Vol. 1, pp. 243–262). Cambridge, MA: MIT Press.

    Google Scholar 

  • Pepperberg, I. M. (2007). Emergence of linguistic communication: Studies on Grey parrots. In C. Lyon, C. L. Nehaniv, & A. Cangelosi (Eds.), Emergence of communication and language (pp. 355–386). London: Springer.

    Google Scholar 

  • Pepperberg, I. M. (2011). Evolution of communication and language: Insights from parrots and songbirds. In M. Tallerman & K. Gibson (Eds.), Oxford handbook of language evolution (pp. 109–119). London: Oxford.

    Google Scholar 

  • Pepperberg, I. M. (in press). Evolution of vocal communication: an avian model. In J. J. Bolhuis & M. Everaet (Eds.), Birdsong, speech, and language: Converging mechanisms. Cambridge, MA: MIT Press.

    Google Scholar 

  • Pepperberg, I. M., & Shive, H. (2001). Simultaneous development of vocal and physical object combinations by a Grey Parrot (Psittacus erithacus): Bottle caps, lids, and labels. Journal of Comparative Psychology, 115, 376–384.

    PubMed  CAS  Google Scholar 

  • Perkel, D. J. (2004). Origin of the anterior forebrain pathway. Annals of the New York Academy of Sciences, 1016, 736–748.

    PubMed  Google Scholar 

  • Person, A. L., Gale, S. D., Farries, M. A., & Perkel, D. J. (2008). Organization of the songbird basal ganglia, including Area X. Journal of Comparative Neurology, 508, 840–866.

    PubMed  Google Scholar 

  • Phan, M. L., Pytte, C. L., & Vicario, D. S. (2006). Early auditory experience generates long lasting memories that may subserve vocal learning in songbirds. Proceedings of the National Academy of Sciences USA, 103, 1088–1093.

    CAS  Google Scholar 

  • Poeppel, D., & Monahan, P. J. (2008). Speech perception: Cognitive foundations and cortical implementation. Current Directions in Psychological Science, 17, 80–85.

    Google Scholar 

  • Pollick, A. S., & de Waal, F. (2007). Ape gestures and language evolution. Proceedings of the National Academy of Sciences USA, 104, 8184–8189.

    CAS  Google Scholar 

  • Prather, J. F., Peters, S., Nowicki, S., Mooney, R. (2008). Precise auditory–vocal mirroring in neurons for learned vocal communication. Nature, 451, 305–310.

    PubMed  CAS  Google Scholar 

  • Rizzolatti, G., & Arbib, M. (1998). Language within our grasp. Trends in Neuroscience, 21, 188–194.

    CAS  Google Scholar 

  • Rizzolatti, G., Fogassi, L., Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of actions. Nature Review Neurology, 2, 661–670.

    CAS  Google Scholar 

  • Ro, T. (May, 2011). Feeling sounds: Auditory influences on touch perception. Paper presented at the 161st meeting of the Acoustical Society of America, Seattle, WA.

    Google Scholar 

  • Roush, R. S., & Snowdon, C. T. (2001). Food transfer and development of feeding behavior and food-associated vocalizations in cotton-top tamarins. Ethology, 107, 415–429.

    Google Scholar 

  • Saranathan, V., Hamilton, D., Powell, G. V. N., Kroodsma, D. E., & Prum, R. O. (2007). Genetic evidence supports song-learning in the three-wattled bellbird Procnias trucarunculata (Cotingidae). Molecular Ecology, 16, 3689–3702.

    PubMed  CAS  Google Scholar 

  • Seyfarth, R., Cheney, D., & Marler, P. (1980). Monkey responses to three different alarm calls: Evidence for predator classification and semantic communication. Science, 210, 801–803.

    PubMed  CAS  Google Scholar 

  • Slocombe, K., Waller, B. M., & Liebal, K. (2011). The language void: the need for multimodality in primate communication research. Animal Behaviour, 81, 919–924.

    Google Scholar 

  • Smith, W. J. (1997). The behavior of communicating, after twenty years. In D. H. Owings, M. D. Beecher, & N. S. Thompson (Eds.), Perspectives in ethology (Vol. 12, pp. 7–53). New York: Plenum.

    Google Scholar 

  • Smith, W. J., & Smith, A. M. (1992). Behavioral information provided by two song forms of the Eastern kingbird, T. tyrannus. Behaviour, 120, 90–102.

    Google Scholar 

  • Smith, W. J., & Smith, A. M. (1996). Information about behavior provided by Louisiana waterthrush, Seurus motacilla (Parulinae), songs. Animal Behaviour, 51, 785–799.

    Google Scholar 

  • Smith, A. D. M., Smith, K., & Ferrer i Cancho, R. (Eds.). (2008). The Evolution of language: Proceedings of the 7th international conference. London: World Scientific Publishing Company.

    Google Scholar 

  • Snow, D. W. (1973). Distribution, ecology, and evolution of the bellbirds (Procnias, Cotingidae). Bulletin of the British Museum of Natural History, 25, 369–391.

    Google Scholar 

  • Stevens, K. N. (1998). Acoustic phonetics. Cambridge, MA: MIT Press.

    Google Scholar 

  • Studdert-Kennedy, M. (2005). How did language go discrete? In M. Tallerman (Ed.), Language origins: Perspectives on evolution (pp. 48–67). Oxford: Oxford University Press.

    Google Scholar 

  • Strusaker, T. (1967). Auditory communication among vervet monkeys (Ceropithecus aethiops). In S. Altmann & K. Gibson (Eds.), Social communication among primates (pp. 281–324). Chicago: University of Chicago Press.

    Google Scholar 

  • Vauclair, J. (2004). Lateralization of communicative signals in nonhuman primates and the hypothesis of the gestural origin of language. Interaction Studies, 5, 365–386.

    Google Scholar 

  • Vihman, M. H. (1993). Variable paths to early word production. Journal of Phonetics, 21, 61–82.

    Google Scholar 

  • Visalberghi, E., & Fragaszy, D. M. (1990). Do monkeys ape? In S. T. Parker & K. R. Gibson (Eds.), ‘Language’ and intelligence in monkeys and apes (pp. 247– 273). Cambridge: Cambridge University Press.

    Google Scholar 

  • Visalberghi, E., & Fragaszy, D. M. (2002). “Do monkeys ape?” Ten years after. In K. Dautenhahn & C. L. Nehaniv (Eds.), Imitation in animals and artifacts (pp. 471–499). Cambridge, MA: MIT Press.

    Google Scholar 

  • Wild, M. (1997). Neural pathways for the control of birdsong production. Journal of Neurobiology, 33, 653–670.

    PubMed  CAS  Google Scholar 

  • Wild, M., Arends, J. J. A., & Zeigler, H. P. (1985) Telencephalic connections of the trigeminal system in the pigeon (Columba livia): a trigeminal sensorimotor circuit. Journal of Comparative Neurology, 234, 441–464.

    PubMed  CAS  Google Scholar 

  • Williams, H. (1989). Multiple representations and auditory-motor interactions in the avian song system. Annals of the New York Academy of Sciences, 563, 148–164.

    Google Scholar 

  • Williams, H., & Nottebohm, F. (1985). Auditory responses in avian vocal motor neurons: A motor theory for song perception in birds. Science, 229, 279–282.

    PubMed  CAS  Google Scholar 

  • Wilson, E. C., Braida, L. D., & Reed, C. M. (2010). Perceptual interactions in the loudness of combined auditory and vibrotactile stimuli. Journal of the Acoustical Society of America, 127, 3038–3043.

    PubMed  Google Scholar 

Download references

Acknowledgments

Manuscript preparation was supported by donors to The Alex Foundation. Ideas described herein were developed partly during a Bunting Fellowship at the Radcliffe Institute. Significant portions of this manuscript have been adapted from Pepperberg (2011, in press).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene M. Pepperberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pepperberg, I.M. (2012). The Evolution of Learning to Communicate: Avian Model for the Missing Link. In: Schilhab, T., Stjernfelt, F., Deacon, T. (eds) The Symbolic Species Evolved. Biosemiotics, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2336-8_7

Download citation

Publish with us

Policies and ethics