Skip to main content

Lessons for Problem-Solving Energy Research in the Social Sciences

  • Chapter
  • First Online:

Part of the book series: Environment & Policy ((ENPO,volume 52))

Abstract

The prominence of societal, economic and institutional aspects of contemporary global energy challenges makes energy research in the social sciences indispensable. Intensified collaboration on an equal footing among the natural, technical and social sciences is necessary. This concluding chapter offers a synthesis of the editors’ insights from the invited contributions in Part II, the overall ASRELEO project as well as recent findings from the social science literature. Research themes highlighted include reflexivity and futurity; energy, poverty and inequality; critical infrastructure; governance; institutions and regimes; markets; systemic analytical approaches; policy strategies, forecasting and path dependencies; change, social learning and scientific communities; value systems, cultures and actors; social acceptability of energy technologies; and risk and energy communication.

[The planner’s] would-be solutions are confounded by a still further set of dilemmas posed by the growing pluralism of the contemporary publics, whose valuations of his proposals are judged against an array of different and contradicting scales.

It should be clear that the expert is also the player in a political game, seeking to promote his private vision of goodness over others.

Rittel and Webber (1973, pp. 167, 169).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    ASRELEO: Agenda for Social-Science Research on Long-term Energy Options, the research project (2005–2007) out of which this book was developed (see Chapter 1).

  2. 2.

    A number of these sections greatly benefited from contributions by Benjamin K. Sovacool (this volume, Chapter 4).

  3. 3.

    To update our knowledge and to obtain a richer picture, we asked the participants of the ASRELEO project to share their knowledge of recent research (in summer 2010).

  4. 4.

    Benjamin K. Sovacool and colleagues (this volume, Chapter 4).

  5. 5.

    E.g., Diamond and Moezzi (2002), Ekins (2003), Brewer and Stern (2005), Jackson (2006), Webler and Tuler (2010); also related efforts, such as Janda (2009), Driessen, Leroy, and Van Vierssen (2010), Research Council of Norway (2010), Chabay et al. (2011), Berlin-brandenburgische Akademie der Wissenschaften et al. (2011), Helmholtz Gemeinschaft (2011).

  6. 6.

    The most common translation of the English term ‘sustainable development’ in Germany is ‘Zukunftsfähigkeit’ (futurity) (BUND & Misereor, 1996).

  7. 7.

    The combination of the (political) French Revolution of 1789 and the (technical) English Industrial Revolution was the last ‘dual revolution’, called by Hobsbawm ‘probably the most important event in world history’ (Hobsbawm, 1962, p. 62). The German film director C. A. Fechner titled his 2010 movie The 4th Revolution – following the agrarian, industrial and digital revolutions comes the energy revolution. (http://www.energyautonomy.org > English, all web links accessed November 16, 2011).

  8. 8.

    http://www.undp.org/energy

  9. 9.

    In the case of nuclear systems, so-called safeguards add to the complexity of safety concepts. Safeguards commonly refer to measures against the misuse of nuclear material, or dual-use goods, for building atomic weapons.

  10. 10.

    Critical infrastructure or ‘lifelines’ include the operation and distribution of fuel and energy, telecommunications, railways, air traffic, water and disposal systems. Support measures have been implemented in several countries, e.g., UK: http://www.cabinetoffice.gov.uk/ukresilience; Canada: http://www.publicsafety.gc.ca/prg/em/cbrne-rap-eng.aspx; USA: http://www.dhs.gov/xabout/gc_1296160752600.shtm

  11. 11.

    Iran, for instance, has discovered this through its experience with the 2010 Stuxnet computer virus attack on its nuclear facilities (Farwell & Rohozinski, 2011).

  12. 12.

    For a conceptual treatment see Perrow (1984), applied for example by Le Coze and Dupré (2006) or de Carvalho, dos Santos, Gomes, da Silva Borges, and Huber (2006) in industrial environments or by Westrum (2006) to a natural disaster.

  13. 13.

    As a concrete example: It is not sustainable, in the true sense of the word, to substitute fossil-fuel based colonisation in oil-rich countries with extensive solar farming, as is potentially envisaged in a large-scale European solar energy scheme in Northern Africa (http://www.desertec.com), even though the pressure to change existing energy systems has increased after the recent Deepwater Horizon and Fukushima catastrophes. Desertec faces serious obstacles due to instability in the region, a factor that is also deterring potential investors.

  14. 14.

    Governance has been defined as ‘the set of traditions and institutions by which authority in a country is exercised. The political, economic, and institutional dimensions of governance are captured by six aggregate indicators’. These are in the fields of voice and accountability, political stability and absence of violence, and government effectiveness (IBRD/WB, 2006, p. 3).

  15. 15.

    It originated with the work of Emery and Trist (1960) and Hughes (1969, 1983, 1987) and was extended in the edited compilations of Mayntz and Hughes (1988), La Porte (1991), Summerton (1994) and Coutard (1999).

  16. 16.

    There is not necessarily a contradiction between a truly systemic – integrative, non-mechanistic – approach and Hughes’s ‘seamless web’ (as is suspected by Joerges, 1996, p. 57).

  17. 17.

    Examples of recent national energy strategies that attempt this include German Federal Environment Agency (2010), Fachausschuss ‘Nachhaltiges Energiesystem 2050’ (2010), and Schreurs (2010).

  18. 18.

    Cf., for example, Brand and Karvonen (2007), Hessels and van Lente (2008), Hansson and Bryngelsson (2009), Möller (2009).

  19. 19.

    As a practical matter for research in an era of increasing fiscal austerity, investments in networking existing social science knowledge about energy systems may be more cost-effective than new projects that seek to add to it (Ekins, 2003).

  20. 20.

    For other examples of recent studies in this area, see Kemp (1997), Elzen, Geels, and Green (2004), Schot and Geels (2007), Verbong, Geels, and Raven (2008), Verbong, Christiaens, Raven, and Balkema (2010), and Grin, Rotmans, Schot, Geels, and Loorbach (2010).

  21. 21.

    See e.g., http://ukerc.rl.ac.uk/index.html, or http://www.eptanetwork.org

  22. 22.

    See also Cash (2003) or Hessels and van Lente (2008).

  23. 23.

    In an earlier report by the Secretary-General, the list was more comprehensive. Additional items included peace, security, disarmament, development and poverty eradication, protecting the common environment, human rights, democracy and good governance, protecting the vulnerable as well as ‘strengthening the United Nations’ (Annan, 2002a).

  24. 24.

    ‘Buildings don’t use energy: people do’ (Janda, 2011). And after all, consumers want power, light and heat, not kilowatts or kilowatt hours.

  25. 25.

    In the mid-term there is no effective difference between the two strategies, since efficiency must be drastically improved either way. However, the 1 ton CO2 Society does not call into question growth in energy consumption per se and envisions a fossil-free (possibly including nuclear-based) electrification of the society (ETH, 2008).

  26. 26.

    Based on proposed research questions in the introductory article for the 2007 special issue in Energy Policy on this topic (Wüstenhagen, Wolsink, & Bürer, 2007).

  27. 27.

    http://www.ihdp.unu.edu

  28. 28.

    http://www.energy-cities.eu, http://www.eumayors.eu, http://www.iclei.org

  29. 29.

    http://www.sustenergy.org.

  30. 30.

    http://www.climatealliance.org.

References

  • Alcamo, J. (2001). Scenarios as tools for international environmental assessments. Experts’ corner report. Prospects and Scenarios No. 5. Environmental issue report No. 24. Copenhagen: European Environment Agency.

    Google Scholar 

  • Alcott, B. (2008). The sufficiency strategy: Would rich-world frugality lower environmental impact? Ecological Economics, 64(4), 770–786.

    Google Scholar 

  • Anderies, J. M., Janssen, M. A., & Ostrom, E. (2004). A framework to analyze the robustness of social-ecological systems from an institutional perspective. Ecology and Society, 9(1), 18. All web links accessed November 16, 2011, http://www.ecologyandsociety.org/vol9/iss1/art18

  • Annan, K. (2002a). Implementation of the United Nations Millennium Declaration. Report of the Secretary-General. Fifty-seventh session, Item 44 of the provisional agenda (A/57/150). Follow-up to the outcome of the Millennium Summit. A/57/270. General Assembly, 31 July. New York: United Nations.

    Google Scholar 

  • Annan, K. (2002b). An achievable agenda. World Summit on Sustainable Development. New York: United Nations.

    Google Scholar 

  • Argyris, C., & Schön, D. (1978). Organizational learning: A theory of action perspective. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Banfi Frost, S., Berg, M., Dupont, J.-F., Gysler, M., Kiener, E., Minsch, J., et al. (2011). Erneuerbare Energien. Herausforderungen auf dem Weg zur Vollversorgung. SATW Schrift Nr. 42. Bern: SATW Schweizerische Akademie der Technischen Wissenschaften.

    Google Scholar 

  • Barkindo, M. (2006, February). Energy supply and demand security. Paper presented at EUROPIA Conference, London. http://www.opec.org/opec_web/en/1097.htm

  • Barry, J., Geraint, E., & Robinson, C. (2008). Cool rationalities and hot air: A rhetorical approach to understanding debates on renewable energy. Global Environmental Politics, 8(2), 67–98.

    Google Scholar 

  • Beck, U. (1992). Risk society: Towards a new modernity. London: Sage Publications.

    Google Scholar 

  • Beck, U. (1994). The reinvention of politics: Towards a theory of reflexive modernization. In U. Beck, A. Giddens, & S. Lash (Eds.), Reflexive modernization (pp. 1–55). Cambridge: Polity Press.

    Google Scholar 

  • Bellucci, S., & Joss, S. (Ed.). (2002). Participatory technology assessment: European perspectives. Centre for the Study of Democracy. London: University of Westminster Publication.

    Google Scholar 

  • Berlin-brandenburgische Akademie der Wissenschaften, Deutsche Akademie der Technikwissenschaften, & Leopoldina (2011). Die Bedeutung der Gesellschafts- und Kulturwissenschaften für eine integrierte und systemisch ausgerichtete Energieforschung. Berlin: Berlin-brandenburgische Akademie der Wissenschaften.

    Google Scholar 

  • Biermann, F., & Pattberg, P. (2008). Global environmental governance: Taking stock, moving forward. Annual Review of Environment and Natural Resources, 33, 277–294.

    Google Scholar 

  • Bijker, W. (1995). Of bicycles, bakelites, and bulbs: Toward a theory of sociotechnical change. Cambridge, MA: MIT Press.

    Google Scholar 

  • Bijker, W. E., Hughes, T. P., & Pinch, T. (Eds.). (1987). The social construction of technological systems: New directions in the sociology and history of technology. Cambridge, MA: MIT Press.

    Google Scholar 

  • Bloor, D. (1991). The strong program in the sociology of knowledge. In D. Bloor (Ed.), Knowledge and social imagery (pp. 3–23). Chicago: University of Chicago Press.

    Google Scholar 

  • Blumer, Y. (forthcoming). Vulnerability and potential analysis (VPA) of the Swiss energy system. In Cooperation project with the Swiss Federal Office of Energy (BFE). PhD project. Natural and Social Science Interface. Zurich: ETH.

    Google Scholar 

  • BP, British Petroleum. (2010). Deepwater horizon: Accident investigation report. 8 September 2010. London: BP. http://www.bp.com (BP global > Gulf of Mexico restoration > Investigating the accident > BP internal investigation).

  • Brand, R., & Karvonen, A. (2007). The ecosystem of expertise: Complementary knowledges for sustainable development. Sustainability: Science, Practice & Policy, 3(1), 21–31.

    Google Scholar 

  • Brewer, G., & Stern, P. (Ed.). (2005). Decision making for the environment: Social and behavioral science research priorities. Washington, DC: National Academies Press.

    Google Scholar 

  • Brown, M. A., & Sovacool, B. K. (2011). Climate change and global energy security: Technology and policy options. Cambridge: MIT Press.

    Google Scholar 

  • BUND & Misereor (Eds.). (1996). Zukunftsfähiges Deutschland. Ein Beitrag zu einer global nachhaltigen Entwicklung. Studie des Wuppertal-Instituts für Klima, Umwelt, Energie. Basel: Birkhäuser.

    Google Scholar 

  • Caldwell, L. K. (1976). Energy and the structure of social institutions. Human Ecology, 4(1), 31–45.

    Google Scholar 

  • Callon, M., Law, J., & Rip, A., (Eds.) (1986). Mapping the dynamics of science and technology: Sociology of science in the real world. London: Macmillan.

    Google Scholar 

  • Cash, D. W. (2003). Knowledge systems for sustainable development. PNAS, 100(14): 8087–8091.

    Google Scholar 

  • CASS/ProClim. (1997). Research on sustainability and global change – Visions in science policy by Swiss researchers. http://www.proclim.ch/4dcgi/proclim/en/media?1122

  • Ceccarelli, L. (2004). Rhetoric of science and technology. In C. Mitchem (Ed.), Encyclopedia of science, technology, and ethics (vol. 3: L-R, pp. 1625–29). Detroit: Macmillan Reference.

    Google Scholar 

  • Ceccarelli, L. (2005). A hard look at ourselves: A reception study of rhetoric of science. Technical Communication Quarterly, 14(3), 257–265.

    Google Scholar 

  • Ceccarelli, L., Doyle, R., & Selzer, J. (1996). Introduction to the special issue on rhetoric of science. Rhetoric Society Quarterly, 26(4), 7–12.

    Google Scholar 

  • Chabay, I. et al. (2011, draft). Knowledge, learning, and societal change: Finding paths to a sustainable future. Science plan for a cross-cutting core project of the International Human Dimensions Programme on Global Environmental Change, IHDP. 67 pp.

    Google Scholar 

  • Chubin, D. E., & Restivo, S. (1983). The ‘mooting’ of science studies: Research programmes and science policy. In K. D. Knorr-Cetina & M. Mulkay (Eds.), Science observed: Perspectives on the social study of science (pp. 53–84). London: Sage.

    Google Scholar 

  • Clark, W. C., & Dickson, N. (2003). Sustainability science: The emerging research program. PNAS, 100(14): 8059–8061.

    Google Scholar 

  • Cohen, M. (2011). Book review perspectives: The end of modernity: What the financial and environmental crisis is really telling us, Stuart Sim. Sustainability: Science, Practice, & Policy, 7(2), http://sspp.proquest.com/static_content/vol7iss2/book.sim-print.html

  • Collins, H. M. (1985). Changing order: Replication and induction in scientific practice. Chicago: University of Chicago Press.

    Google Scholar 

  • Committee to Review the IPCC. (2010). Climate change assessments: Review of the processes and procedures of the IPCC. Amsterdam: Interacademy Council.

    Google Scholar 

  • Costanza, R., Cleveland, C., Cooperstein, B., & Kubiszewski, I. (2011, April 5). Can nuclear power be part of the solution? Solutions for a sustainable and desirable future. The Solutions Journal, 2(3). http://www.thesolutionsjournal.com/print/918

  • Coutard, O. (Ed.). (1999). The governance of large technical systems. New York: Routledge.

    Google Scholar 

  • Craig, P. P., Gadgil, A., & Koomey, J. G. (2002). What can history teach us? A retrospective examination of long-term energy forecasts for the United States. Annual Review of Energy and Environment, 27, 83–118.

    Google Scholar 

  • Crosbie, T. (2006). Household energy studies: The gap between theory and method. Energy & Environment, 17(5), 735–753.

    Google Scholar 

  • Davison, A. (2001). Technology and the contested meanings of sustainability. New York: State University of New York Press.

    Google Scholar 

  • de Carvalho, P. V. R., dos Santos, I. L., Gomes, J. O., da Silva Borges, M. R., & Huber, G. J. (2006). The role of nuclear power plant operators’ communications in providing resilience and stability in system operation. Paper presented at the 2nd Symposium on Resilience Engineering, Juan-les-Pins, France, 8–10 November. http://www.resilience-engineering.org

  • de Haan, G., Kamp, G., Lerch, A., Martignon, L., Müller-Christ, G., Nutzinger, H. G. (Eds.). (2008). Nachhaltigkeit und Gerechtigkeit. Grundlagen und schulpraktische Konsequenzen. Ethics of Science and Technology Assessment, 33. Berlin: Springer.

    Google Scholar 

  • De-Shalit, A. (1995). Why posterity matters: Environmental policies and future generations. New York: Routledge.

    Google Scholar 

  • Diamond, R., & Moezzi, M. (2002). Becoming allies: Combining social science and technological perspectives to improve energy research and policy making. LBNL-50704. Berkeley: Lawrence Berkeley National Laboratory, LBNL.

    Google Scholar 

  • Dietz, T., Ostrom, E., & Stern, P. (2003). The struggle to govern the commons. Science, 302(5652), 1907–1912.

    Google Scholar 

  • Dobson, A. (Ed.). (1999). Fairness and futurity: Essays on environmental sustainability and social justice. Oxford: Oxford University Press.

    Google Scholar 

  • Driessen, P. J., Leroy, P., & Van Vierssen, W. (2010). From climate change to social change. Perspectives on science-policy interactions. Utrecht: International Books.

    Google Scholar 

  • EC, European Commission (2009). The world in 2025 – Rising Asia and socio-ecological transition. Brussels: Directorate-General for Research.

    Google Scholar 

  • Edenhofer, O., Wallacher, J., Reder, M., & Lotze-Campen, H. (2010). Global aber gerecht. Klimawandel bekämpfen, Entwicklung ermöglichen. Ein Report des Potsdam-Instituts für Klimafolgenforschung und des Instituts für Gesellschaftspolitik. Munich: C. H. Beck.

    Google Scholar 

  • EEA, European Environment Agency. (2009). Looking back on looking forward: A review of evaluative scenario literature. EEA Technical report, no. 3/2009. Copenhagen: EEA.

    Google Scholar 

  • Egan, C. (2001). The application of social science to energy conservation: Realizations, models, and findings. Report No. E002. Washington, DC: American Council for an Energy-Efficient Economy.

    Google Scholar 

  • Einarsson, S., & Rausand, M. (1998). An approach to vulnerability analysis of complex industrial systems. Risk Analysis, 18(5), 535.

    Google Scholar 

  • Ekins, P. (2003, June). Prospects and policies for step changes in the energy system: Developing an agenda for social science research. Final report to the Economic and Social Research Council. London: Policy Studies Institute at the University of Westminster.

    Google Scholar 

  • Elzen, B. E., Geels, F. W., & Green, K. (Eds.). (2004). System innovation and the transition to sustainability: Theory, evidence and policy. Cheltenham: Edward Elgar.

    Google Scholar 

  • Emery, F. E., & Trist, E.L. (1960). Toward a social ecology: Contextual appreciations of the future in the present. New York: Plenum Books.

    Google Scholar 

  • EMF, Energy Modeling Forum. (2011). Energy efficiency and climate change mitigation. EMF Report 25, 1, March 2011. Stanford, CA: Stanford University

    Google Scholar 

  • Esser, J. K., & Lindoerfer, J. S. (1988). Groupthink and the space shuttle Challenger accident: Toward a quantitative case analysis. Behavioral Decision Making, 2, 167–177.

    Google Scholar 

  • ETH Zurich, Eidg. Technische Hochschule Zürich (2008). Energy strategy for ETH Zurich. K. Boulouchos et al. (Eds.). Zurich: Energy Science Center. http://www.esc.ethz.ch/publications/energy

  • Eucken, W. (1968). Grundsätze der Wirtschaftspolitik, 4. Auflage. Tübingen: J.C.B. Mohr, Zürich; Polygraphischer Verlag.

    Google Scholar 

  • Fachausschuss ‘Nachhaltiges Energiesystem 2050’ des ForschungsVerbunds Erneuerbare Energien (2010). Energiekonzept 2050. Eine Vision für ein nachhaltiges Energiekonzept auf Basis von Energieeffizienz und 100% erneuerbaren Energien. Berlin: Fraunhofer IBP, Fraunhofer ISE, Fraunhofer IWES, ForschungsVerbund Erneuerbare Energien.

    Google Scholar 

  • Farrell, A. E., Zerriffi, H., & Dowlatabadi, H. (2004). Energy infrastructure and security. Annual Review of Environment and Resources, 29, 421–469.

    Google Scholar 

  • Farwell, J., & Rohozinski, R. (2011). Stuxnet and the future of cyber war. Survival, 53(1), 23–40.

    Google Scholar 

  • Fischhoff, B., Slovic, P., Lichtenstein, S., Read, S. & Combs, B. (1978). How safe is safe enough? A psychometric study of attitudes towards technological risks and benefits. Policy Sciences, 9, 127–152.

    Google Scholar 

  • Florini, A. E., & Sovacool, B. K. (2009). Who governs energy? The challenges facing global energy governance. Energy Policy, 37(12), 5239–5248.

    Google Scholar 

  • Flüeler, T. (2001). Options in radioactive waste management revisited: A proposed framework for robust decision-making. Risk Analysis, 21(4), 787–799.

    Google Scholar 

  • Flüeler, T. (2006). Decision making for complex socio-technical systems. Robustness from lessons learned in long-term radioactive waste governance. Vol. 42: Series Environment & Policy. Dordrecht: Springer.

    Google Scholar 

  • Flüeler, T. (2007). Energy forecasts in search of today’s society – Some insights from social science to bridge the gap. Paper presented at the International Energy Workshop 2007, Stanford, CA.

    Google Scholar 

  • Flüeler, T., Goldblatt, D., Minsch, J., & Spreng, D. (2007). Meeting global energy challenges: Towards an agenda for social science research. Final Report for EFDA and BP, Contract EFDA/05-1255. Zürich: ETH. http://www.esc.ethz.ch/box_feeder/ASRELEO-Projekt

    Google Scholar 

  • Folke, C., Carpenter, S., Elmqvist, T., Gunderson, L., Holling, C. S., & Walker, B. (2002). Resilience and sustainable development: Building adaptive capacity in a world of transformations. Ambio, 31(5), 437–440.

    Google Scholar 

  • German Federal Environment Agency. (2010). Energy goal 2050: 100% renewable electricity supply by 2050. Press release, no. 39/2010. Conference on July 7, 2010, Dessau-Rosslau: Umweltbundesamt.

    Google Scholar 

  • Girod, B., de Haan, P., & Scholz, R. W. (2011). Consumption-as-usual instead of ceteris paribus assumption for demand: Integration of potential rebound effects into LCA. The International Journal of Life Cycle Assessment, 16(1), 3–11.

    Google Scholar 

  • Girod, B., Wiek, A., Mieg, H., & Hulme, M. (2009). The evolution of the IPCC’s emissions scenarios. Environmental Science & Policy, 12, 103–118.

    Google Scholar 

  • Goldblatt, D. (2005a). Combining interviewing and modeling for end-user energy conservation. Energy Policy, 33(2), 257–271.

    MathSciNet  Google Scholar 

  • Goldblatt, D. (2005b). Sustainable energy consumption and society: Personal, technological, or social change? Dordrecht: Springer.

    Google Scholar 

  • Goldblatt, D. (2007). Book review perspectives: The logic of sufficiency, Thomas Princen. Sustainability: Science, Practice, & Policy, 3(1). http://sspp.proquest.com/static_content/vol3iss1/SSPP-v3.1.pdf

  • Graham, B., Reilly, W. K., Beinecke, F., Boesch, D. F., Garcia, T. D., Murray, C. A., & Ulmer, F. (2011). Deep water: The Gulf oil disaster and the future of offshore drilling. Report to the President. National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling. http://www.oilspillcommission.gov/final-report

  • Grin, J., Rotmans, J., Schot, J. W., Geels, F. W., & Loorbach, D. (2010). Transitions to sustainable development: New directions in the study of long term transformative change. London: Routledge.

    Google Scholar 

  • Gross, A. G. (2006). Starring the text: The place of rhetoric in science studies. Carbondale: Southern Illinois University Press.

    Google Scholar 

  • Gunderson, L. H., & Holling, C. S. (Eds.). (2002). Panarchy: Understanding transformations in human and natural systems. Washington, DC: Island Press.

    Google Scholar 

  • Hansson, A., & Bryngelsson, M. (2009). Expert opinions on carbon dioxide capture and storage – a framing of uncertainties and possibilities. Energy Policy, 37, 2273–2282.

    Google Scholar 

  • Hård, M., & Jamison, A. (2005). Hubris and hybrids. A cultural history of technology and science. New York/London: Routledge.

    Google Scholar 

  • Härtel, C., & Pearman, G. (2010). Understanding and responding to the climate change issue: Towards a whole-of-science research agenda. Journal of Management & Organization, 16(1).

    Google Scholar 

  • Helmholtz Gemeinschaft (2011). Zukünftige Infrastrukturen der Energieversorgung. Auf dem Weg zur Nachhaltigkeit und Sozialverträglichkeit. Proposal for the Establishment of a Helmholtz Alliance. Karlsruhe: Karlsruhe Institute of Technology (KIT).

    Google Scholar 

  • Herring, H., & Sorrell, S. (2009). Energy efficiency and sustainable consumption: The rebound effect. Basingstoke: Palgrave Macmillan.

    Google Scholar 

  • Hessels, L. K., & van Lente, H. (2008). Re-thinking new knowledge production: A literature review and a research agenda. Research Policy, 37, 740–760.

    Google Scholar 

  • Hobsbawm, E. (1962). The age of revolution: Europe 1789–1848. London: Weidenfeld and Nicolson.

    Google Scholar 

  • Hofman, P. S., & Elzen, B. (2010). Exploring system innovation in the electricity system through sociotechnical scenarios. Technology Analysis and Strategic Management, 22(6), 653–670.

    Google Scholar 

  • Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4, 1–23. See also http://www.resalliance.org

    Google Scholar 

  • Holling, C. S. (1996). Engineering resilience versus ecological resilience. In P. C. Schulze (Ed.), Engineering within ecological constraints (pp. 31–43). Washington, DC: National Academy Press.

    Google Scholar 

  • Hughes, T. P. (1969). Technological momentum in history: Hydrogenation in Germany 1898–1933. Past and Present, 44(1), 106–132.

    Google Scholar 

  • Hughes, T. P. (1983). Networks of power: Electrification in Western Society, 1880–1930. Baltimore, MD: Johns Hopkins University Press.

    Google Scholar 

  • Hughes, T. P. (1987). The evolution of large technological systems. In W. E. Bijker et al. (Eds.), The social construction of technological systems: New directions in the sociology and history of technology (pp. 51–82). Cambridge, MA: MIT Press.

    Google Scholar 

  • IAEA, International Atomic Energy Agency. (1991). Safety culture. A report by the International Nuclear Safety Advisory Group. Safety Series, 75, INSAG-4. Vienna: IAEA.

    Google Scholar 

  • IBRD, The International Bank for Reconstruction and Development, & The World Bank. (2006). A decade of measuring the quality of governance. Governance matters 2006. Worldwide governance indicators. Washington, DC: IBRD/The World Bank.

    Google Scholar 

  • IEA, International Energy Agency, UNDP, UNIDO. (2010). Energy poverty: How to make modern energy access universal? Special early excerpt of the World Energy Outlook 2010 for the UN General Assembly on the Millennium Development Goals. Paris: OECD/IEA.

    Google Scholar 

  • IPCC, International Panel on Climate Change. (2007a). Summary for policymakers. In IPCC (Ed.), Climate change 2007. Synthesis report. Cambridge: Cambridge University Press.

    Google Scholar 

  • IPCC. (2007b). Summary for policymakers. In IPCC (Ed.), Climate change 2007. Impacts, adaptation and vulnerability. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jackson, T. (2006). An agenda for social science research in energy. Summary of a Research Council Workshop held on 6th April 2006, University of Surrey.

    Google Scholar 

  • Jaeger, C., & Jaeger, J. (2010). Three views of two degrees. EFC Working Paper. Potsdam: European Climate Forum.

    Google Scholar 

  • Janda, K. (2009). Exploring the social dimensions of energy use: A review of recent research initiatives. ECEEE 2009 Summer Study. Act! Innovate! Deliver! Reducing Energy Demand Sustainably. Proceedings, vol. 4, pp. 1841–1852. Paper presented at the European Council for an Energy-Efficient Economy, ECEEE Summer Study, Colle Sur Loop, France, June 1–6. http://www.eci.ox.ac.uk/publications/downloads/janda09exploring.pdf

  • Janda, K. B. (2011). Buildings don’t use energy: people do. Architectural Science Review, 54, 15–22.

    Google Scholar 

  • Jochem, E. (Ed.). (2004). Steps towards a sustainable development. A white book for R&D of energy-efficient technologies. Novatlantis – Sustainability at the ETH domain. Dübendorf: Novatlantis. (pre-study 2002: Steps towards a 2000 Watt-Society. Developing a white paper on research & development of energy-efficient technologies)

    Google Scholar 

  • Jochem, E., Sathaye, J., & Bouille, D. (Eds.). (2000). Society, behaviour, and climate change mitigation. Dordrecht: Kluwer.

    Google Scholar 

  • Joerges, B. (1996). Large technical systems and the discource of complexity. In L. Ingelstam (Ed.), Complex technical systems (pp. 55–72). FRN, NUTEK, Tema T. Stockholm: Swedish Council for Planning and Coordination of Research, FRN.

    Google Scholar 

  • Kates, R. W. (2010, ed.). Readings in sustainability science and technology. CID Working Paper, 213. Center for International Development. Cambridge, MA: Harvard University Press. http://www.hks.harvard.edu/centers/cid/publications/faculty-working-papers/cid-working-paper-no.-213

    Google Scholar 

  • Kates, R. W. (2011). From the unity of nature to sustainability science: Ideas and practice. CID Working Paper, 218. Center for International Development (CID). Cambridge, MA: Harvard University. http://www.hks.harvard.edu/centers/cid/publications/faculty-working-papers/cid-working-paper-no.-218

  • Kemp, R. (1992): The politics of radioactive waste disposal. Manchester: Manchester University Press.

    Google Scholar 

  • Kemp, R. (1997). Environmental policy and technical change. A comparison of the technological impact of policy instruments. Cheltenham: Edward Elgar.

    Google Scholar 

  • Kesselring, P., & Winter, C.-J. (1994). World energy scenarios: A two-kilowatt society – plausible future or illusion? Proceedings. Villigen: PSI, pp. 103–116. Paper presented at the Conference ‘Energietage 94’, Villigen, Switzerland, 10–12 November.

    Google Scholar 

  • Knorr Cetina, K. D. (1999). Epistemic cultures. How the sciences make knowledge. Cambridge: Harvard University Press.

    Google Scholar 

  • Kopolow, D. (2011). Nuclear power: Still not viable without subsidies. Cambridge, MA: Earth Track.

    Google Scholar 

  • Kuhn, T. S. (1962). The structure of scientific revolutions. Chicago: University of Chicago Press.

    Google Scholar 

  • Kuhn, T. S. (1977). The essential tension: Selected studies in scientific tradition and change. Chicago: University of Chicago Press.

    Google Scholar 

  • La Porte, T. (Ed.). (1991). Social responses to large technical systems: Control or adaptation. London: Kluwer.

    Google Scholar 

  • Latour, B. (1987). Science in action: How to follow scientists and engineers through society. Cambridge: Harvard University Press.

    Google Scholar 

  • Latour, B., & Woolgar, S. (1979). Laboratory life: The construction of scientific facts. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Le Billon, P. (2005). Fuelling war: Natural resources and armed conflict. London: Adelphi Papers.

    Google Scholar 

  • Le Coze, J. C., & Dupré, M. (2006). How to prevent a normal Accident in a high reliable organisation? The art of resilience, a case study in the chemical industry. Paper presented at the 2nd Symposium on Resilience Engineering, Juan-les-Pins, France, 8–10 November. http://www.resilience-engineering.org

  • Lenzen, M. (2008). Life cycle energy and greenhouse gas emissions of nuclear energy. A review. Energy Conversion and Management, 49(8), 2178–2199.

    Google Scholar 

  • Lichtenberg, G. Chr. (1789–1793). Sudelbücher. In W. Promies (1971, ed.), Schriften und Briefe. Band 1, Heft J (860). München: Carl Hanser.

    Google Scholar 

  • Lidskog, R., & Elander, I. (1992). Reinterpreting locational conflicts: NIMBY and nuclear waste management in Sweden. Policy & Politics, 20(4), 249–264.

    Google Scholar 

  • Lochard, J., & Prêtre, S. (1995). Return to normality after a radiological emergency. Health Physics, 68(1): 21–26.

    Google Scholar 

  • Lohmann, L. (2010). Climate crisis: Social science crisis. In M. Voss. (Ed.), Der Klimawandel: Sozialwissenschaftliche Perspektiven. Wiesbaden: VS Verlag für Sozialwissenschaften.

    Google Scholar 

  • Maclean, D. (1980). Benefit-cost analysis, future generations and energy policy: A survey of the moral issues. Science, Technology, & Human Values, 5(31), 3–10.

    Google Scholar 

  • MacKenzie, D. (1993). Inventing accuracy: A historical sociology of nuclear missile guidance. Cambridge, MA: MIT Press.

    Google Scholar 

  • Madlener, R., & Alcott, B. (2009). Energy rebound and economic growth: A review of the main issues and research needs. Energy, 34(3), 370–376.

    Google Scholar 

  • Mayntz, R., & Hughes, T. P. (Eds.). (1988). The development of large technical systems. Boulder, CO: Westview Press.

    Google Scholar 

  • Mazmanian, D., & Morell, D. (1990). The ‘NIMBY’ syndrome: Facility siting and the failure of democratic discourse. In N. J. Vig & M. E. Kraft (Eds.), Environmental policy in the 1990s. Toward a new agenda (pp. 125–143). Washington, DC: CQ-Press.

    Google Scholar 

  • Merton, R. K. (1973). The sociology of science. Chicago: University of Chicago Press.

    Google Scholar 

  • Mileti, D. S. (1999). Disasters by design. A reassessment of natural hazards in the United States. National Academy of Sciences. Washington, DC: Joseph Henry Press.

    Google Scholar 

  • Modi, V., McDade, S., Lallement, D., & Saghir, J. (2005). Energy services for the Millennium Development Goals. Foreword by J. D. Sachs. Washington, DC: The International Bank for Reconstruction and Development/The World Bank and the United Nations Development Programme.

    Google Scholar 

  • Möller, N. (2009). Should we follow the experts’ advice? On epistemic uncertainty and asymmetries of safety. International Journal of Risk Assessment and Management, 11(4), 219–236.

    Google Scholar 

  • Möller, N., & Hansson, S. O. (2008). Principles of engineering safety: Risk and uncertainty reduction. Reliability Engineering and System Safety, 93, 776–783.

    Google Scholar 

  • Möller, N., Hansson, S. O., & Peterson, M. (2006). Safety is more than the antonym of risk. Journal of Applied Philosophy, 23(4), 419–432.

    Google Scholar 

  • Mourik, R. M., Breukers, S., Heiskanen, E., Bauknecht, D., Hodson, M., Barabanova, Y., et al. (2009). Conceptual framework and model: Synthesis report tailored for policy makers as target group. A practical and conceptual framework of intermediary demand-side practice. European Commission Seventh Framework Programme (Theme: Energy).

    Google Scholar 

  • NAS-BSD, National Academy of Sciences, Board on Sustainable Development. (1999). Our common journey: A transition toward sustainability. Washington, DC: National Academy Press.

    Google Scholar 

  • Novatlantis. (2011). Smarter living. Moving forward to a sustainable energy future with the 2000 watt society. Novatlantis – Sustainability at the ETH Domain, with the support of Swiss Federal Office of Energy (SFOE) and the Swiss Engineers and Architects Association (SIA). Berne: Swiss Federal Office for Buildings and Logistics (BBL).

    Google Scholar 

  • Orttung, R. W., & Perovic, J. (2009). Energy security. In M. D. Cavelty, et al. (Eds.), The Routledge handbook of security studies. London: Routledge.

    Google Scholar 

  • Ostrom, E. (2009). A polycentric approach for coping with climate change. Report prepared for the WDR2010 Core Team, Development and Economics Research Group, World Bank. Bloomington, IN: Indiana University.

    Google Scholar 

  • Ostrom, E. (2010). Polycentric systems for coping with collective action and global environmental change. Global Environmental Change, 20, 550–557.

    Google Scholar 

  • Painuly, J. P. (2001). Barriers to renewable energy penetration. A framework for analysis. Renewable Energy, 24(1), 73–89.

    Google Scholar 

  • Parkin, S., Johnston, A., Buckland, H., Brookes, F., & White, E. (2004). Learning and skills for sustainable development. Developing a sustainability literate society. Guidance for Higher Education institutions. London: Forum for the Future.

    Google Scholar 

  • Perrow, C. (1982). The President’s Commission and the normal accident. In D. L. Sills, C. P. Wolf, & V. B. Shelanski (Eds.), Accident at Three Mile Island: The human dimensions (pp. 173–184). Boulder, CO: Westview.

    Google Scholar 

  • Perrow, C. (1984). Normal accidents. Living with high-risk technologies. New York: Basic Books.

    Google Scholar 

  • Polanyi, M. (1966, reprint 2009). The tacit dimension. London: Routledge (Chicago: University of Chicago Press).

    Google Scholar 

  • Polimeni, J. M., Mayumi, K., Giampietro, M., & Alcott, B. (2008). The Jevons paradox and the myth of resource efficiency improvements. London: Earthscan.

    Google Scholar 

  • Porter, T. (1995). Trust in numbers: The pursuit of objectivity in science and public life. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Poteete, A., Janssen, M., & Ostrom, E. (2010). Working together: Collective action, the commons, and multiple methods in practice. Princeton, NJ: Princeton Universtiy Press.

    Google Scholar 

  • Price, D. de S., & Beaver, D. (1966). Collaboration in an invisible college. American Psychologist, 21, 1011–1018.

    Google Scholar 

  • Princen, T. (2005). The logic of sufficiency. Cambridge: MIT Press.

    Google Scholar 

  • Prins, G., Galiana, I., Green, C., Grundmann, R., Hulme, M., Korhola, A., et al. (2010). The Hartwell Paper: A new direction for climate policy after the crash of 2009. Oxford: Institute for Science, Innovation, and Society, University of Oxford.

    Google Scholar 

  • Rammert, W., & Schulz-Schaeffer, I. (Eds.). (2002). Können Maschinen handeln? Soziologische Beiträge zum Verhältnis von Mensch und Technik. Frankfurt/M., New York: Campus.

    Google Scholar 

  • Raven, R. P. J. M., Mourik, R. M., Feenstra, C. F. J., & Heiskanen, E. (2009). Modulating societal acceptance in new energy projects: Towards a toolkit methodology for project managers. Energy, 34(5), 564–574.

    Google Scholar 

  • Rayner, S. (2010). Trust and the transformation of energy systems. Energy Policy, 38, 2617–2623.

    Google Scholar 

  • Rayner, S., & Malone, E. L. (1998a). Human choice and climate change: The societal framework, 1. Columbus, OH: Battelle Press.

    Google Scholar 

  • Rayner, S., & Malone, E. L. (1998b). Human choice and climate change: The tools for policy analysis, 3. Columbus, OH: Battelle Press.

    Google Scholar 

  • Rayner, S., & Malone, E. L. (1998c). Human choice and climate change: What have we learned?, 4. Columbus, OH: Battelle Press.

    Google Scholar 

  • Reason, J. (1987). The Chernobyl errors. Bulletin of the British Psychological Society, 40, 201–226.

    Google Scholar 

  • Renn, O., & Levine, D. (1991). Credibility and trust in risk communication. In R. E. Kasperson & P. J. M. Stallén (Eds.), Communicating risks to the public: International perspectives. Dordrecht: Kluwer.

    Google Scholar 

  • Research Council of Norway (2010). Energy research gets infusion of social science. http://www.forskningsradet.no/en/Newsarticle/Energy_research_gets_infusion_of_social_science/1253961272887

  • Rip, A. (1987). Controversies as informal technology assessment. Knowledge: Creation, Diffusion, Utilization, 8(2), 349–371.

    Google Scholar 

  • Rittel, H., & Webber, M. (1973). Dilemmas in a general theory of planning. Policy Sciences, 4(2), 155–169.

    Google Scholar 

  • Rychen, D. S., & Salganik, L. H. (Eds.). (2003). Key competencies for a successful life and well-functioning society. Cambridge, MA: Hogrefe und Huber.

    Google Scholar 

  • Scholz, R. W., & Tietje, O. (2002). Embedded case study methods: Integrating quantitative and qualitative knowledge. Thousand Oaks, CA: Sage.

    Google Scholar 

  • Schot, J. W., & Geels, F. W. (2007). Niches in evolutionary theories of technical change: A critical survey of the literature. Journal of Evolutionary Economics, 17(5), 605–622.

    Google Scholar 

  • Schreurs, M. (2010). A 100% renewable electricity supply by 2050: Climate-friendly, reliable, and affordable. Berlin: German Advisory Council on the Environment (SRU).

    Google Scholar 

  • Sen, A. (1993). Capability and well-being. In M. C. Nussbaum & A. Sen (Eds.), The quality of life (pp. 30–53). Oxford: Oxford University Press.

    Google Scholar 

  • Seville, E., Fenwick, T., Brunsdon, D., Myburgh, D., Giovinazzi, S., & Vargo, J. (2009). Resilience retreat. Current and future resilience issues. Resilient Organisations Research Report 2009/05. Christchurch, NZ: Resilient Organisations Programme. http://www.resorgs.org.nz

  • Shell. (2008). Energy scenarios to 2050. The Hague: Shell International BV.

    Google Scholar 

  • Shove, E. (2004). Efficiency and consumption: Technology and practice. Energy & Environment, 15(6), 1053–1065.

    Google Scholar 

  • Singer, C. (2008). Energy and international war: From Babylon to Baghdad and beyond. Singapore: World Scientific.

    Google Scholar 

  • Southernton, D., Cappells, H., & Van Vliet, B. (Eds.). (2004). Sustainable consumption: The implications of changing infrastructures of provision. Cheltenham and Northampton, MA: Edward Elgar.

    Google Scholar 

  • Sovacool, B. (2006). Reactors, missiles, X-rays, and solar panels: Using SCOT, Technological Frame, Epistemic Culture, and Actor Network Theory to investigate technology. Journal of Technology Studies 32(1), 4–14.

    Google Scholar 

  • Sovacool, B., & Brown, M. A. (2010). Competing dimensions of energy security: An international perspective. Annual Review of Environment and Resources, 35, 77–108.

    Google Scholar 

  • Spaargaren, G., Mol, A. P. J., & Bruyninckx, H. (2006). Introduction: Governing environmental flows in global modernity. In G. Spaargaren, A. P. J. Mol, & F. Buttel (Eds.), Governing environmental flows: Global challenges to social theory (pp. 1–36). Cambridge: MIT Press.

    Google Scholar 

  • Spreng, D. (2005). Distribution of energy consumption and the 2000 W/capita target. Energy Policy, 3, 1905–1911.

    Google Scholar 

  • Stern, N. (2009). The global deal: Climate change and the creation of a new era of progress and prosperity. New York: PublicAffairs.

    Google Scholar 

  • Stern, P. (2006). Why social and behavioral science research is critical to meeting California’s climate challenges. The California Energy Commission Web site: http://www.energy.ca.gov/2006publications/CEC-999-2006-027/CEC-999-2006-027.pdf

  • Stirling, A. (2010). Keep it complex. Nature, 468, 1029–1031.

    Google Scholar 

  • Summerton, J. (Ed.). (1994). Changing large technical systems. San Francisco: Westview Press.

    Google Scholar 

  • Sweeney, J. L., & Weyant, J. P. (1979). The Energy Modeling Forum: Past, present and future. EMF PP6.1. Energy Modeling Forum, Stanford University. Stanford: Stanford University.

    Google Scholar 

  • Tassey, G. (2007). The technology imperative. Northampton, MA: Edward Elgar.

    Google Scholar 

  • Taylor, C. A. (1996). Defining science: A rhetoric of demarcation. Madison, WI: University of Wisconsin Press.

    Google Scholar 

  • Travis, W. R. (2010). Going to the extremes: Propositions on the social response to severe climate change. Climatic Change, 98, 1–19.

    Google Scholar 

  • Trutnevyte, E., Stauffacher, M., & Scholz, R. W. (2010a). From visions to actions. Novel approach to linking energy visions with energy scenarios and assessing consequences. Institute für Environmental Decisions. Natural and Social Science Interface. Zurich: ETH.

    Google Scholar 

  • Trutnevyte, E., Stauffacher, M., & Scholz, R. W. (2010b). Visions of stakeholders, engineering expertise and multicriteria assessment for energy strategies of a small community. Paper presented at the 11th Biennial Conference ‘Advancing sustainability in a time of crisis’ of the International Society of Ecological Economics in Oldenburg and Bremen, Germany.

    Google Scholar 

  • Tvedt, T., Chapman, G., & Hagen, R. (Eds.). (2010). A history of water, vol. 3: Water and geopolitics in the new world order. London: I. B. Tauris.

    Google Scholar 

  • UN AGECC, The Secretary-General’s Advisory Group on Energy and Climate Change (AGECC). (2010). Energy for a sustainable future. Summary report and recommendations. New York: United Nations.

    Google Scholar 

  • UNDP, United Nations Development Programme, & GEF, Global Environment Facility. (2011). Adapting to climate change. UNDP-GEF Initiatives financed by the Least Developed Countries Fund, Special Climate Change Fund and Strategic Priority on Adaptation. New York: UNDP.

    Google Scholar 

  • UNFCCC. (1992). The United Nations Framework Convention on Climate Change. http://unfccc.int (> The Convention)

  • Verbong, G. P. J., Christiaens, W. G. J., Raven, R. P. J. M., & Balkema, A. J. (2010). Strategic niche management in an unstable regime: Biomass gasification in India. Environmental Science and Policy, 13(4), 272–281.

    Google Scholar 

  • Verbong, G. P. J., Geels, F. W., & Raven, R. P. J. M. (2008). Multi-niche analysis of dynamics and policies in Dutch renewable energy innovation journeys (1970–2006): Hype-cycles, closed networks and technology-focused learning. Technology Analysis & Strategic Management, 20(5), 555–573.

    Google Scholar 

  • Vogl, J. (2010). Das Gespenst des Kapitals. Zürich: Diaphenes.

    Google Scholar 

  • von Hayek, A. F. (1968). Der Wettbewerb als Entdeckungsverfahren. In A. F. von Hayek (1969, 2nd ed. 1994), Freiburger Studien. Gesammelte Aufsätze. Tübingen: J.C.B. Mohr/P. Siebeck.

    Google Scholar 

  • Voss, J.-P., Bauknecht, D., & Kemp, R. (2006). Reflexive governance for sustainable development. Cheltenham: Edward Elgar.

    Google Scholar 

  • Walker, B., Holling, C. S., Carpenter, S. R., & Kinzig. A. (2004). Resilience, adaptability and transformability in social-ecological systems. Ecology and Society 9(2): 5. http://www.ecologyandsociety.org/vol9/iss2/art5

    Google Scholar 

  • WBGU, German Advisory Council on Global Change. (2011a). Welt im Wandel. Gesellschaftsvertrag für eine grosse Transformation. Zusammenfassung für Entscheidungsträger. Berlin: WBGU, Wissenschaftlicher Beirat der Bundesregierung für Umweltfragen.

    Google Scholar 

  • WBGU. (2011b). World in transition. A social contract for sustainability. Summary for policy-makers. Berlin: WBGU. http://www.wbgu.de

    Google Scholar 

  • WCED, World Commission on Environment and Development (Brundtland Commission). (1987). Our common future. Oxford: Oxford University Press.

    Google Scholar 

  • Webler, T., & Tuler, S. P. (2010). Getting the engineering right is not always enough: Researching the human dimensions of the new energy technologies. Energy Policy, 38, 2690–2691.

    Google Scholar 

  • WEC, World Energy Council. (2007). Deciding the future: Energy policy scenarios to 2050. London: WEC.

    Google Scholar 

  • Weingart, P. (2008). How robust is ‘socially robust knowledge’? In M. Carrier, D. Howard, & J. Kourany (Eds.), The challenge of the social and the pressure of practice: Science and values revisited (pp. 131–145). Pittsburgh, PA: University of Pittsburgh Press.

    Google Scholar 

  • Westrum, R. (2006). All coherence gone: New Orleans as a resilience failure. Paper presented at the 2nd symposium on resilience engineering, Juan-les-Pins, France, November 8–10, 2006). http://www.resilience-engineering.org

  • Wilhite, H. (1996). A cross-cultural analysis of household energy use behaviour in Japan and Norway. Energy Policy, 24(9), 795–803.

    Google Scholar 

  • Wilhite, H. (2008). New thinking on the agentive relationship between end-use technologies and energy-using practices. Energy Efficiency, 1, 121–130.

    Google Scholar 

  • Wilhite, H., & Norgard, J. (2004). Equating efficiency with reduction: A self-deception in energy policy. Energy and Environment 15(3), 991–1011.

    Google Scholar 

  • Wilhite, H., Shove, E., Lutzenhiser, L., & Kempton, W. (2000). The legacy of twenty years of energy demand management: We know more about individual behaviour but next to nothing about demand. In E. Jochem, et al. (Eds.), Society, behaviour, and climate change mitigation (pp. 109–126). Dordrecht: Kluwer.

    Google Scholar 

  • Woolgar, S. (1988). Reflexivity is the ethnographer of the text. In S. Woolgar (Ed.), Knowledge and reflexivity: New frontiers in the sociology of scientific knowledge (pp. 1–13). London: Sage.

    Google Scholar 

  • Wüstenhagen, R., Wolsink, M., & Bürer, M. J. (2007). Social acceptance of renewable energy innovation: An introduction to the concept. Energy Policy, 35(5), 2683–2691.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürg Minsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Minsch, J., Flüeler, T., Goldblatt, D.L., Spreng, D. (2012). Lessons for Problem-Solving Energy Research in the Social Sciences. In: Spreng, D., Flüeler, T., Goldblatt, D., Minsch, J. (eds) Tackling Long-Term Global Energy Problems. Environment & Policy, vol 52. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2333-7_14

Download citation

Publish with us

Policies and ethics