Skip to main content

Bioremediation of Petroleum Hydrocarbons in Soils

  • Chapter
  • First Online:

Abstract

Crude oil is a complex mixture of hydrocarbons, basically composed of aliphatic, aromatic and asphaltene fractions along with nitrogen, sulfur and oxygen containing compounds. Major causes of oil contaminated soils include: leakage of storage tanks and pipelines, land disposal of petroleum wastes and accidental spills. Apart from damaging crops and affecting the fertility of soil, crude oil on the fields also affects livestock. The loss of soil fertility and toxicity of petroleum hydrocarbon at higher concentrations have been linked to displacement of nutrients and nutrient linkage, reduction in phosphorus and nitrogen availability, and anoxic conditions. Moreover, it can cause microbial community structure changes and a decrease in microbial diversity. The aromatics in crude oils such as α-pinene, limonene, camphene, and isobornyl acetate were observed to be inhibitory to the microorganisms. In recent years, there has been increasing interest in developing on site and in situ techniques for remediation of oil-contaminated soils. Bioremediation can be achieved by natural attenuation, biopiling, bioaugmentation, phytoremediation or rhizoremediation, singly or in combination. Numerous genera of bacteria are known as good hydrocarbon degraders. Most of them belong to Aeromonas, Alcaligenes, Acinetobacter, Arthobacter, Bacillus, Brevibacterium, Mycobacterium, Pseudomonas, Rhodococcus, Sphingomonas, and Xanthomonas species. Similarly white-rot fungi like Bjerkandera adusta, Irpex lacteus, Lentinus tigrinus and Pleurotus tuberregium are reported to degrade polyaromatic hydrocarbons. Other filamentous fungi include: Aspergillus, Cladosporium, Fusarium, Geotrichum, Mucor and Peniciliium, to name a few. The yeasts such as Candida, Debaryomyces, Leucosporidium, Lodderomyces, Metschnikowia, Pichia, Rhodosporidium, Rhodotorula, Sporidiobolus, Sporobolomyces, Stephanoascus, Trichosporon and Yarrowia were also reported to be effective hydrocarbon degraders. The microbial diversity in the different soil layers can be studied using functional diversity (­community-level physiological profile, via Biolog) and genetic diversity using mainly PCR-DGGE (density gradient gel electrophoresis) technique. The details regarding microbial diversity changes due to oil contamination, biochemical pathways for hydrocarbon degradation, use of different microorganisms, singly and in combination, for bioremediation, possible ways to restore original diversity and soil fertility have been discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • R.M.M. Abed, N.M.D. Safi, J. Koster, D. de Beer, Y. El-Nahhal, J. Rullkotter, F. Garcia-Pichel, Appl. Environ. Microbiol. 68, 1674–1683 (2002)

    PubMed  CAS  Google Scholar 

  • O.M. Agbogidi, P.G. Eruotor, S.O. Akparobi, Am. J. Food Technol. 2, 529–535 (2007)

    Google Scholar 

  • C.M. Aitken, D.M. Jones, S.R. Larter, Nature 431, 291–294 (2004)

    PubMed  CAS  Google Scholar 

  • R.H. Al-Hasan, D.A. Al-Bader, N.A. Sorkhoh, S.S. Radwan, Mar. Biol. 130, 521–527 (1998)

    CAS  Google Scholar 

  • M. Al-Sarawi, M.S. Massaud, F. Al-Abdali, Water Air Soil Pollut. 106, 493–504 (1997)

    Google Scholar 

  • E. Annweiler, H.H. Richnow, G. Antranikian, S. Hebenbrock, C. Garms, S. Franke, W. Francke, W. Michaelis, Appl. Environ. Microbiol. 66, 518–523 (2000)

    PubMed  CAS  Google Scholar 

  • R.M. Atlas, Microbiol. Rev. 45, 180–209 (1981)

    PubMed  CAS  Google Scholar 

  • M. Auffret, D. Labbe, G. Thouand, C.W. Greer, F. Fayolle-Guichard, Appl. Environ. Microbiol. 75, 7774–7782 (2009)

    PubMed  CAS  Google Scholar 

  • M. Baboshin, V. Akimov, B. Baskunov, T.L. Born, S.U. Khan, L. Golovleva, Biodegradation 19, 567–576 (2008)

    PubMed  CAS  Google Scholar 

  • K.H. Baek, H.S. Kim, J. Microbiol. Biotechnol. 19, 651–657 (2009)

    PubMed  Google Scholar 

  • K.H. Baek, B.D. Yoon, B.H. Kim, D.H. Cho, I.S. Lee, H.M. Oh, H.S. Kim, J. Microbiol. Biotechnol. 17, 67–73 (2007)

    PubMed  CAS  Google Scholar 

  • M.T. Balba, N. Al-Awadhi, R. Al-Daher, J. Microbiol. Methods 32, 155–164 (1998)

    CAS  Google Scholar 

  • F.M. Bento, F.A.O. Camargo, B.C. Okeke, W.T. Frankenberger, Bioresour. Technol. 96, 1049–1055 (2005)

    PubMed  CAS  Google Scholar 

  • L. Berthe-Corti, S. Fetzner, Acta Biotechnol. 22, 299–336 (2002)

    CAS  Google Scholar 

  • M. Binazadeh, I.A. Karimi, Z. Li, Enzyme Microb. Technol. 45, 195–202 (2009)

    CAS  Google Scholar 

  • S. Bordenave, M.S. Goni-Urriza, P. Caumette, R. Duran, Appl. Environ. Microbiol. 73, 6089–6097 (2007)

    PubMed  CAS  Google Scholar 

  • A.M. Boronin, A.E. Filonov, R.R. Gayazov, A.N. Kulakova, Y.N. Mshensky, FEMS Microbiol. Lett. 113, 303–308 (1993)

    PubMed  CAS  Google Scholar 

  • J.G. Bundy, G.I. Paton, C.D. Campbell, J. Appl. Microbiol. 92, 276–288 (2002)

    PubMed  CAS  Google Scholar 

  • P.A. Cane, P.A. Williams, J. Gen. Microbiol. 128, 2281–2290 (1982)

    CAS  Google Scholar 

  • C.E. Cerniglia, D.T. Gibson, Appl. Environ. Microbiol. 34, 363–370 (1977)

    PubMed  CAS  Google Scholar 

  • A.M. Chakrabarty, G. Chou, I.C. Gunsalus, Proc. Natl. Acad. Sci. U.S.A. 70, 1137–1140 (1973)

    PubMed  CAS  Google Scholar 

  • A.M. Chakrabarty, D.A. Friello, L.H. Bopp, Proc. Natl. Acad. Sci. U.S.A. 75, 3109–3112 (1978)

    PubMed  CAS  Google Scholar 

  • F.H. Chapelle, Ground Water 37, 122–132 (1999)

    CAS  Google Scholar 

  • O. Csutak, I. Stoica, R. Ghindea, A.M. Tanase, T. Vassu, Romanian Biotechnol. Lett. 15, 5066–5071 (2010)

    CAS  Google Scholar 

  • J.W. Czekalowski, B. Skarzynski, J. Gen. Microbiol. 2, 231–238 (1948)

    CAS  Google Scholar 

  • J.I. Davies, W.C. Evans, Biochem. J. 91, 251–261 (1964)

    PubMed  CAS  Google Scholar 

  • J.J. Dennis, G.J. Zylstra, J. Mol. Biol. 341, 753–768 (2004)

    PubMed  CAS  Google Scholar 

  • E.A. Diab, Global J. Environ. Res. 2, 66–73 (2008)

    Google Scholar 

  • E. Diaz, Int. Microbiol. 7, 173–180 (2004)

    PubMed  CAS  Google Scholar 

  • F.F. Evans, A.S. Rosado, G.V. Sebastian, R. Casella, L.O.A. Pedro, C. Machado Holmstrom, S. Kjelleberg, J.D. van Elsas, L. Seldin, FEMS Microbiol. Ecol. 49, 295–305 (2004)

    PubMed  CAS  Google Scholar 

  • L. Feng, W. Wang, J. Cheng, Y. Ren, G. Zhao, C. Gao, Y. Tang, X. Liu, W. Han, X. Peng, R. Liu, L. Wang, Proc. Natl. Acad. Sci. U.S.A. 104, 5602–5607 (2007)

    PubMed  CAS  Google Scholar 

  • J. Foght, J. Mol. Microbiol. Biotechnol. 15, 93–120 (2008)

    PubMed  CAS  Google Scholar 

  • B.G. Fox, W.A. Froland, J.E. Dege, J.D. Lipscombs, J. Biol. Chem. 264, 10023–10033 (1989)

    PubMed  CAS  Google Scholar 

  • W. Geißdörfer, R.G. Kok, A. Ratajczak, K.J. Hellingwerf, W. Hillen, J. Bacteriol. 181, 4292–4298 (1999)

    PubMed  Google Scholar 

  • B.R. Glick, Biotechnol. Adv. 21, 383–393 (2003)

    PubMed  CAS  Google Scholar 

  • E.A. Greene, J.G. Kay, K. Jaber, L.G. Stehmeier, G. Voordouw, Appl. Environ. Microbiol. 66, 5282–5289 (2000)

    PubMed  CAS  Google Scholar 

  • A.C. Grimm, C.S. Harwood, Appl. Environ. Microbiol. 83, 4111–4115 (1997)

    Google Scholar 

  • T. Hadibarata, S. Tachibana, in Interdisciplinary Studies on Environmental Chemistry-Environmental Research in Asia, ed. by Y. Obayashi, T. Isobe, A. Subramanian, S. Suzuki, S. Tanabe (Terrapub, Tokyo, 2009), pp. 322–329

    Google Scholar 

  • A.S. Hakemian, A.C. Rosenzweig, Annu. Rev. Biochem. 76, 223–241 (2007)

    PubMed  CAS  Google Scholar 

  • R. Hardman, K.R. Brain, Phytochemistry 10, 1817–1822 (1971)

    CAS  Google Scholar 

  • J. Heider, A.M. Spormann, H.R. Beller, F. Widdel, FEMS Microbiol. Rev. 22, 459–473 (1999)

    Google Scholar 

  • S. Husain, Remediation 18, 131–160 (2008)

    Google Scholar 

  • T. Iida, T. Sumita, A. Ohta, M. Takagi, Yeast 16, 1077–1087 (2000)

    PubMed  CAS  Google Scholar 

  • O.S. Isikhuemhen, G.O. Anoliefo, O.I. Oghale, Environ. Sci. Pollut. Res. 10, 108–112 (2003)

    CAS  Google Scholar 

  • R.J.S. Jacques, B.C. Okeke, F.M. Bento, A.S. Teixeira, M.C.R. Paralba, F.A.O. Camargo, Bioresour. Technol. 99, 2637–2643 (2008)

    PubMed  CAS  Google Scholar 

  • R.K. Jain, M. Kapur, S. Labana, B. Lal, P.M. Sarma, D. Bhattacharya, I.S. Thakur, Curr. Sci. 89, 101–112 (2005)

    CAS  Google Scholar 

  • K.S. Jorgensen, J. Puustinen, A.-M. Suortti, Environ. Pollut. 107, 245–254 (2000)

    PubMed  CAS  Google Scholar 

  • S.-Y. Jung, J.-H. Lee, Y.-G. Chai, S.-J. Kim, J. Microbiol. Biotechnol. 15, 1170–1177 (2005)

    CAS  Google Scholar 

  • C.W. Kaplan, C.L. Kitts, Appl. Environ. Microbiol. 70, 1777–1786 (2004)

    PubMed  CAS  Google Scholar 

  • I. Kelley, J.P. Freeman, C.E. Cerniglia, Biodegradation 1, 283–290 (1990)

    PubMed  CAS  Google Scholar 

  • A.C. Kennedy, K.L. Smith, Plant Soil 170, 75–86 (1995)

    CAS  Google Scholar 

  • I. Kuiper, E.L. Lagendijk, G.V. Bloemberg, B.J.J. Lugtenberg, Mol. Plant Microbe Interact. 17, 6–15 (2004)

    PubMed  CAS  Google Scholar 

  • S.H. Lee, W.S. Lee, C.H. Lee, J.G. Kim, J. Hazard. Mater. 153, 892–898 (2007)

    PubMed  Google Scholar 

  • W. Liu, Y. Luo, Y. Teng, Z. Li, L.Q. Ma, Environ. Geochem. Health 32, 23–29 (2010)

    PubMed  CAS  Google Scholar 

  • K.-C. Loh, Y.-G. Yu, Water Res. 34, 4131–4138 (2000)

    CAS  Google Scholar 

  • S.J. Macnaughton, J.R. Stephen, A.D. Venosa, G.A. Davis, Y.-J. Chang, D.C. White, Appl. Environ. Microbiol. 65, 3566–3574 (1999)

    PubMed  CAS  Google Scholar 

  • J.H. Maeng, Y. Sakai, Y. Tani, N. Kato, J. Bacteriol. 178, 3695–3700 (1996)

    PubMed  CAS  Google Scholar 

  • S. Mahmood, M. Kauser, A. Hussain, Pak. J. Biol. Sci. 9, 1861–1868 (2006)

    Google Scholar 

  • R. Margesin, F. Schinner, Appl. Environ. Microbiol. 67, 3127–3133 (2001)

    PubMed  CAS  Google Scholar 

  • M.S. Massaud, M. Al-Sarawi, S.A. Wahba, Water Air Soil Pollut. 118, 281–297 (2000)

    Google Scholar 

  • S.S. Mauersberger, W.-H. Schunck, H.-G. Muller, Appl. Microbiol. Biotechnol. 19, 29–35 (1984)

    CAS  Google Scholar 

  • R.U. Meckenstock, E. Annweiler, W. Michaelis, H.H. Richnow, B. Schink, Appl. Environ. Microbiol. 66, 2743–2747 (2000)

    PubMed  CAS  Google Scholar 

  • R.C. Miranda, C. Silva de Souza, E. de B. Gomes, R.B. Lovaglio, C.E. Lopes, M. de F. Vieira de Queiroz Sousa, Braz. Arch. Biol. Technol. 50, 147–152 (2007)

    Google Scholar 

  • S. Mishra, J. Jyot, R.C. Kuhad, B. Lal, Appl. Environ. Microbiol. 67, 1675–1681 (2001)

    PubMed  CAS  Google Scholar 

  • L. Molina-Barahona, R. Rodriguez-Vazquez, M. Hernandez-Velasco, C. Vega-Jarquin, O. Zapata-Perez, A. Mendoza-Cantu, A. Albores, Appl. Soil Ecol. 27, 165–175 (2004)

    Google Scholar 

  • S. Mukherji, S. Jagadevan, G. Mohapatra, A. Vijay, Bioresour. Technol. 95, 281–286 (2004)

    PubMed  CAS  Google Scholar 

  • O. Obire, E.C. Anyanwu, Int. J. Environ. Sci. Technol. 6, 211–218 (2009)

    CAS  Google Scholar 

  • A. Ogino, H. Koshikawa, T. Nakahara, H. Uchiyama, J. Appl. Microbiol. 91, 625–635 (2001)

    PubMed  CAS  Google Scholar 

  • O.R. Ogri, Environmentalist 21, 11–21 (2001)

    Google Scholar 

  • L.C. Osuji, I. Nwoye, Afri. J. Agric. Res. 2, 318–324 (2007)

    Google Scholar 

  • B.O. Peretiemo-Clarke, F.I. Achuba, Plant Pathol. J. 6, 179–182 (2007)

    CAS  Google Scholar 

  • G.A. Plaza, K. Jangid, K. Lukasik, G. Nalecz-Jawecki, C.J. Berry, R.L. Brigmon, Bull. Environ. Contam. Toxicol. 81, 329–333 (2008)

    PubMed  CAS  Google Scholar 

  • N. Popp, M. Schlomann, M. Mau, Microbiology 152, 3291–3304 (2006)

    PubMed  CAS  Google Scholar 

  • Y. Prabhu, P.S. Phale, Appl. Microbiol. Biotechnol. 61, 342–351 (2003)

    PubMed  CAS  Google Scholar 

  • S.P. Pradhan, J.R. Conrad, J.R. Paterek, V.J. Srivastava, J. Soil Contam. 7, 467–480 (1998)

    CAS  Google Scholar 

  • R.L. Raymond, J.O. Hudson, V.W. Jamison, Appl. Environ. Microbiol. 31, 522–532 (1976)

    PubMed  CAS  Google Scholar 

  • R.A. Rossello-Mora, J. Lalucat, E. Garcia-Valdes, Appl. Environ. Microbiol. 60, 966–972 (1994)

    PubMed  CAS  Google Scholar 

  • H.W. Ryu, Y.H. Joo, Y.J. An, K.S. Cho, J. Microbiol. Biotechnol. 16, 605–612 (2006)

    CAS  Google Scholar 

  • M. Safinowski, R.U. Meckenstock, Environ. Microbiol. 8, 347–352 (2006)

    PubMed  CAS  Google Scholar 

  • M.A. Sanchez, L.M. Campbell, F.A. Brinker, D. Owens, Ind. Wastewater 5, 37–42 (2000)

    Google Scholar 

  • O. Sanchez, E. Diestra, I. Esteve, J. Mas, Microb. Ecol. 50, 580–588 (2005)

    PubMed  CAS  Google Scholar 

  • A. Schutzendubel, A. Majcherczyk, C. Johannes, A. Huttermann, Int. Biodeterior. Biodegrad. 43, 93–100 (1999)

    CAS  Google Scholar 

  • J.S. Seo, Y.S. Keum, Q.X. Li, Int. J. Environ. Res. Public Health 6, 278–309 (2009)

    PubMed  CAS  Google Scholar 

  • A. Serrano, M. Gallego, J.L. Gonzales, M. Tejada, Environ. Pollut. 151, 494–502 (2008)

    PubMed  CAS  Google Scholar 

  • K.S. Smith, A.M. Costello, M.E. Lidstrom, Appl. Environ. Microbiol. 63, 4617–4620 (1997)

    PubMed  CAS  Google Scholar 

  • T.H.M. Smits, S.B. Balada, B. Witholt, J.B. van Beilen, J. Bacteriol. 184, 1733–1742 (2002)

    PubMed  CAS  Google Scholar 

  • N. Sood, B. Lal, J. Environ. Manage. 90, 1728–1736 (2009)

    PubMed  CAS  Google Scholar 

  • M. Subba Rao, G. Kishore, C. Rambabu, Curr. Trends Biotechnol. Pharm. 4, 702–707 (2010)

    Google Scholar 

  • F.B.G. Tanee, L.A. Akonye, J. Appl. Sci. Environ. Manage. 13, 43–47 (2009)

    Google Scholar 

  • G.T. Townsend, R.C. Prince, J.M. Suflita, FEMS Microbiol. Ecol. 49, 129–135 (2004)

    PubMed  CAS  Google Scholar 

  • S. Trapp, A. Kohler, L.C. Larsen, K.C. Zambrano, U. Karlson, J. Soils Sediments 1, 71–76 (2001)

    CAS  Google Scholar 

  • J.B. van Beilen, E.G. Funhoff, Appl. Microbiol. Biotechnol. 74, 13–21 (2007)

    PubMed  CAS  Google Scholar 

  • J.B. van Beilen, S. Panke, S. Lucchini, A.G. Franchini, M. Rothlisberger, B. Witholt, Microbiology 147, 1621–1630 (2001)

    PubMed  Google Scholar 

  • J.B. van Beilen, R. Holtackers, D. Luscher, U. Bauer, B. Witholt, W.A. Duetz, Appl. Environ. Microbiol. 71, 1737–1744 (2005)

    PubMed  Google Scholar 

  • J.D. Van Hamme, A. Singh, O.P. Ward, Microbiol. Mol. Biol. Rev. 67, 503–549 (2003)

    PubMed  Google Scholar 

  • C. Vega-Jarquin, L. Dendooven, I. Magana-Plaza, F. Thalasso, A. Ramos-Valdivia, Environ. Toxicol. Chem. 20, 2670–2675 (2001)

    PubMed  CAS  Google Scholar 

  • M. Vinas, M. Griffol, J. Sabate, A.M. Solanas, J. Ind. Microbiol. Biotechnol. 28, 252–260 (2002)

    PubMed  CAS  Google Scholar 

  • K. Watanabe, Curr. Opin. Biotechnol. 12, 237–241 (2001)

    PubMed  CAS  Google Scholar 

  • R.J. Watkinson, P. Morgan, Biodegradation 1, 79–92 (1990)

    PubMed  CAS  Google Scholar 

  • L.G. Whyte, L. Bourbonniere, C.W. Greer, Appl. Environ. Microbiol. 63, 3719–3723 (1997)

    PubMed  CAS  Google Scholar 

  • F. Widdel, R. Rabus, Curr. Opin. Biotechnol. 12, 259–276 (2001)

    PubMed  CAS  Google Scholar 

  • K. Yamane, H. Maki, T. Nakayama, T. Nakajima, N. Nomura, H. Uchiyama, M. Kitaoka, Biosci. Biotechnol. Biochem. 72, 2831–2839 (2008)

    PubMed  CAS  Google Scholar 

  • K.M. Yen, I.C. Gunsalus, J. Bacteriol. 162, 1008–1013 (1985)

    PubMed  CAS  Google Scholar 

  • I.S. You, D. Ghosal, I.C. Gunsalus, J. Bacteriol. 170, 5409–5415 (1988)

    PubMed  CAS  Google Scholar 

  • X. Zhang, L.Y. Young, Appl. Environ. Microbiol. 63, 4759–4764 (1997)

    PubMed  CAS  Google Scholar 

  • S.S. Zinjarde, A. Pant, M.V. Deshpande, Mycol. Res. 102, 553–558 (1998)

    Google Scholar 

Download references

Acknowledgements

SVK is grateful to University Grant Commission, New Delhi for the award of Teacher Fellowship and ASP is grateful to the Council of Scientific & Industrial Research, New Delhi for the award of Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Deshpande .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Netherlands

About this chapter

Cite this chapter

Kulkarni, S.V., Palande, A.S., Deshpande, M.V. (2012). Bioremediation of Petroleum Hydrocarbons in Soils. In: Satyanarayana, T., Johri, B. (eds) Microorganisms in Environmental Management. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2229-3_26

Download citation

Publish with us

Policies and ethics