Skip to main content

Halophiles – Taxonomy, Diversity, Physiology and Applications

  • Chapter
  • First Online:
Microorganisms in Environmental Management

Abstract

Halophiles are salt-loving organisms inhabiting environments with the capacity to balance the osmotic pressure of the environment and resist the denaturing effects of salts such as salt induced co-aggregation of proteins. They are diverse group of organisms that thrive extreme saline environments. Depending upon their requirement for salt concentration, they are classified as halotolerant, moderately halophile and extreme halophile. Halophiles have been routinely isolated from marine salterns and hypersaline lakes with 3.5–4.5 M (20–30 g% NaCl). Extremely halophilic archaea were characterized from saline environment in different parts of Turkey, “Solar de Atacama”, Chile, two salt lakes in Xin-Jiang, China. The family Halobacteriaceae contains 96 species classified in 27 genera. Mechanism of salt tolerance and halophily has been studied to some extent. The organisms devise protection against high concentration of Na+. They are reported to produce certain biochemicals like glycine betaine which acts as compatible solute for high concentration of NaCl. The cell envelope and outer membrane shows modification in composition based on ionic strength of outer environment. Extremophiles are being looked upon as a treasure of novel biomolecules, biomaterials and metabolites. Haloarchaeal enzymes are unusually stable and adapted to extreme environments thus are suitable candidates for applications in industrial processes that are performed under harsh conditions of high ionic strength. Bacteriorhodopsin, a photochemical produced by halophiles has a potential in conversion of light energy into chemical energy and electricity. Halophiles have wide range of biotechnological potential in industry e.g. biosurfactant production, biopolymers in oil recovery, proteases and amylases in detergent industry, poly-beta hydroxyalkanoate as biodegradable plastic, exopolysaccharide and bioremediation of contaminated hypersaline brines etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • R.L. Adams, N.J. Russell, Can. J. Microbiol. 38, 823–827 (1992)

    PubMed  CAS  Google Scholar 

  • R.L. Adams, M. Kogut, N.J. Russell, Biochem. Cell Biol. 68, 249–254 (1989)

    Google Scholar 

  • S.S. Al-Zarban, A.A. Al-Musallam, I. Abbas, E. Stackebrandt, R.M. Kroppenstedt, Int. J. Syst. Evol. Microbiol. 52(2), 555–558 (2002)

    PubMed  CAS  Google Scholar 

  • M.A. Amoozegar, F. Malekzadeh, K.A. Malik, J. Microbiol. Methods 52, 353–359 (2003)

    PubMed  CAS  Google Scholar 

  • J. Anton, A. Oren, S. Benlloch, F. Rodriguez-Valera, R. Amann, R. Rossello-Mora, Int. J. Syst. Evol. Microbiol. 52(2), 485–491 (2002)

    PubMed  CAS  Google Scholar 

  • A. Antunes, W. Eder, P. Fareleira, H. Santos, R. Huber, Extremophiles 7(1), 29–34 (2003)

    PubMed  Google Scholar 

  • D.R. Arahal, M.C. Gutiérrez, B.E. Volcani, A. Ventosa, Syst. Appl. Microbiol. 23(3), 376–385 (2000)

    PubMed  CAS  Google Scholar 

  • D.R. Arahal, M.T. García, C. Vargas, D. Cánovas, J.J. Nieto, A. Ventosa, Int. J. Syst. Evol. Microbiol. 51(4), 1457–1462 (2001)

    PubMed  CAS  Google Scholar 

  • S. Arias, A. del Moral, M.R. Ferrer, R. Tallon, E. Quesada, V. Bejar, Extremophiles 7, 319–326 (2003)

    PubMed  CAS  Google Scholar 

  • D. Asker, Y. Ohta, Int. J. Syst. Evol. Microbiol. 52, 729–738 (2002)

    PubMed  CAS  Google Scholar 

  • V. Bejar, I. Llamas, C. Calco, E. Quesada, J. Biotechnol. 61, 135–141 (1998)

    CAS  Google Scholar 

  • A. Ben-Amotz, M. Avron, R.C. Cresswell, T.A.V. Rees, N. Shah, Dunaliella. Algal and Cyanobacterial Biotechnology (Longman Scientific and Technical Press, Harlow, 1989), pp. 91–114

    Google Scholar 

  • S. Benlloch, A. López-López, E.O. Casamayor, L. Øvreås, V. Goddard, F.L. Daae, G. Smerdon, R. Massana, I. Joint, F. Thingstad, C. Pedrós-Alió, F. Rodríguez-Valera, Environ. Microbiol. 4(6), 349–360 (2002)

    PubMed  Google Scholar 

  • A. Biswas, A. Patra, A.K. Paul, Acta Microbiol. Immunol. Hung. 56, 125–143 (2009)

    PubMed  CAS  Google Scholar 

  • J.S. Blum, J.F. Stolz, A. Oren, R.S. Oremland, Arch. Microbiol. 175(3), 208–219 (2001)

    PubMed  CAS  Google Scholar 

  • D.W. Bolen, I.V. Baskakov, J. Mol. Biol. 310, 955–963 (2001)

    PubMed  CAS  Google Scholar 

  • M.J. Bonete, J. Ferrer, C. Pire, M. Penades, J.L. Ruiz, Biochemie 82, 1143–1150 (2000)

    CAS  Google Scholar 

  • D.R. Boone, C.W. Richard (eds.), Bergey’s Manual of Systematic Bacteriology, vol. 1, 2nd edn. (Springer, New York/Berlin/Heidelberg, 2001)

    Google Scholar 

  • M.A. Borowitzka, J. Biotechnol. 70, 313–321 (1999)

    CAS  Google Scholar 

  • L.J. Borowitzka, A.D. Brown, Arch. Mikrobiol. 96(1), 37–52 (1974)

    PubMed  CAS  Google Scholar 

  • S. Bouchotroch, E. Quesada, A. del Moral, I. Llamas, V. Bejar, Int. J. Syst. Evol. Microbiol. 51(5), 1625–1632 (2001)

    PubMed  CAS  Google Scholar 

  • D.J. Brenner, N.R. Krieg, J.T. Staley (eds.), Bergey’s Manual of Systematic Bacteriology, vol. 2, 2nd edn. (Springer, New York/Berlin/Heidelberg, 2005)

    Google Scholar 

  • A.D. Brown, Bacteriol. Rev. 40(4), 803–846 (1976)

    PubMed  CAS  Google Scholar 

  • A.D. Brown, in Microbial Water Stress Physiology Principles and Perspectives, ed. by A.D. Brown (Wiley, Chichester, 1990)

    Google Scholar 

  • M.J. Brown, J.N. Lester, Water Res. 13, 817–837 (1979)

    CAS  Google Scholar 

  • B.P. Burns, F. Goh, M. Allen, B.A. Neilan, Environ. Microbiol. 6, 1096–1101 (2004)

    PubMed  CAS  Google Scholar 

  • S.A. Bykova, I.S. Zviagintseva, D.S. Akhlynin, S.S. Beliaev, V.F. Gal’chenko, Mikrobiologiia 69(5), 694–699 (2000)

    PubMed  CAS  Google Scholar 

  • D. Canovas, C. Vargas, L.N. Csonka, A. Ventosa, J.J. Nieto, Appl. Environ. Microbiol. 64, 4095–4097 (1998)

    PubMed  CAS  Google Scholar 

  • D. Canovas, D. Borges, C. Vargas, A. Ventosa, J.J. Nieto, H. Santos, Appl. Environ. Microbiol. 65, 3774–3779 (1999)

    PubMed  CAS  Google Scholar 

  • C.W. Chen, T.R. Don, H.F. Yen, Process Biochem. 41, 2289–2296 (2006)

    CAS  Google Scholar 

  • J. Chun, K.S. Bae, E.Y. Moon, S.O. Jung, H.K. Lee, S.J. Kim, Int. J. Syst. Evol. Microbiol. 50(5), 1909–1913 (2000)

    PubMed  CAS  Google Scholar 

  • R. Ciulla, C. Clougherty, N. Belay, S. Krishnan, C. Zhou, D. Byrd, M.F. Roberts, J. Bacteriol. 176, 3177–3187 (1994)

    PubMed  CAS  Google Scholar 

  • R.A. Ciulla, M.R. Diaz, B.F. Taylor, M.F. Roberts, Appl. Environ. Microbiol. 63, 220–226 (1997)

    PubMed  CAS  Google Scholar 

  • A. Corcelli, S. Lobasso, in Methods in Microbiology-Extremophiles, ed. by A.F. Rainey, A. Oren, vol. 35 (Academic Press, Amsterdam, 2006)

    Google Scholar 

  • L.N. Csonka, A.D. Hanson, Annu. Rev. Microbiol. 45, 569–606 (1991)

    PubMed  CAS  Google Scholar 

  • P. Cyplik, W. Grajek, R. Marecik, P. Kroliczak, R. Dembczynski, Desalination 207, 134–143 (2007)

    CAS  Google Scholar 

  • M.R. D’Souza-Ault, L.T. Smith, G.M. Smith, Appl. Environ. Microbiol. 59, 473–478 (1993)

    PubMed  Google Scholar 

  • S. DasSarma, Microbe 1(3), 120–126 (2006)

    Google Scholar 

  • S. DasSarma, P. Arora, Halophiles, Encyclopaedia of Life Sciences, vol. 8 (Nature Publishing Group, London, 2001), pp. 458–466

    Google Scholar 

  • S. DasSarma, P. Arora, Encyclopedia of Life Sciences, vol. 8 (Nature Publishing Group, London, 2002), pp. 458–466

    Google Scholar 

  • E.B.M. Denner, T.J. Mcgenity, H.J. Busse, W.D. Grant, G. Wanner, H. Stan-lotter, Int. Syst. Bacteriol. 44, 774–780 (1994)

    Google Scholar 

  • E.B. Denner, D. Vybiral, U.R. Fischer, B. Velimirov, H.J. Busse, Int. J. Syst. Evol. Microbiol. 52(2), 549–553 (2002)

    PubMed  CAS  Google Scholar 

  • P.P. Dennis, L.C. Shimmin, Microbiol. Mol. Biol. Rev. 61, 90–104 (1997)

    PubMed  CAS  Google Scholar 

  • P. Deplats, E. Folco, G.L. Salerno, Plant Physiol. Biochem. 43, 133–138 (2005)

    Google Scholar 

  • D. Desmarais, P.E. Jablonski, N.S. Fedarko, M.F. Roberts, J. Bacteriol. 179, 3146–3153 (1997)

    PubMed  CAS  Google Scholar 

  • N.V. Doronina, Y.A. Trotsenko, T.P. Tourova, Int. J. Syst. Evol. Microbiol. 50(5), 1849–1859 (2000)

    PubMed  CAS  Google Scholar 

  • N.V. Doronina, T.D. Darmaeva, Y.A. Trotsenko, Int. J. Syst. Evol. Microbiol. 53, 223–229 (2003)

    PubMed  CAS  Google Scholar 

  • J.S. Davis, Importance of microorganisms in solar salt production, in: Proceedings of the 4th Symposium on Salt vol. 1. A.L. Coogan, (ed.), Northern Ohio Geological Society, Cleveland, 369–372 (1974)

    Google Scholar 

  • W. Eder, L.L. Jahnke, M. Schmidt, R. Huber, Appl. Environ. Microbiol. 67(7), 3077–3085 (2001)

    PubMed  CAS  Google Scholar 

  • N. Empadinhas, S. Milton, M.S. da Costa, Int. Microbiol. 11, 151–161 (2008)

    PubMed  CAS  Google Scholar 

  • M. Enache, T. Itoh, M. Kamekura, G. Teodosiu, L. Dumitru, Int. J. Syst. Evol. Microbiol. 57, 393–397 (2007)

    PubMed  CAS  Google Scholar 

  • R. Fernandez-Castillo, F. Rodriguez-Valera, J. González-Ramos, F. Ruiz-Berraquero, Appl. Environ. Microbiol. 51(1), 214–216 (1986)

    PubMed  CAS  Google Scholar 

  • S.A. Fish, T.J. Shepherd, T.J. McGenity, W.D. Grant, Nature 417, 432–436 (2002)

    PubMed  CAS  Google Scholar 

  • E.A. Galinski, Advances in Microbial Physiology, vol. 37 (Academic Press Limited, London, 1995), pp. 237–328

    Google Scholar 

  • E.A. Galinski, A. Oren, Eur. J. Biochem. 198, 593–598 (1991)

    PubMed  CAS  Google Scholar 

  • E.A. Galinski, M.S. Da Costa, J.C. Duarte, R.A.D. Williams (eds.), Microbiology of Extreme Environments and Its Potential for Biotechnology (Elsevier Applied Science, London, 1989), pp. 375–379

    Google Scholar 

  • E.A. Galinski, K. Lippert, F. Rodriguez-Valera (eds.), General and Applied Aspects of Halophilic Microorganisms (Plenum Press, New York, 1991), pp. 351–358

    Google Scholar 

  • P. Gaumette, Y. Cohen, R. Matheron, Syst. Appl. Microbiol. 14, 33–38 (1991)

    Google Scholar 

  • J. Gomes, W. Steiner, Food. Technol. Biotechnol. 42, 223–235 (2004)

    CAS  Google Scholar 

  • A. Gorkovenko, M.F. Roberts, J. Bacteriol. 175, 4087–4095 (1993)

    PubMed  CAS  Google Scholar 

  • L. Govender, L. Naidoo, M.E. Setati, Afr. J. Biotechnol. 8(20), 5458–5466 (2009)

    CAS  Google Scholar 

  • W.D. Grant, R.T. Gemmell, T.J. McGenity, Extremophiles 2, 279–287 (1998)

    PubMed  CAS  Google Scholar 

  • W.D. Grant, M. Kamekura, T.J. McGenity, A. Ventosa, Class III Halobacteria class. nov, in Bergey’s Manual of Systematic Bacteriology, ed. by D.R. Boone, R.W. Castenholz, G.M. Garrity, vol. 1, 2nd edn. (Springer, New York, 2001), pp. 294–334

    Google Scholar 

  • C. Gruber, A. Legat, M. Pfaffenhuemer, C. Radax, G. Weidler, H.J. Busse, H. Stan-Lotter, Extremophiles 8, 431–439 (2004)

    PubMed  CAS  Google Scholar 

  • B. Guo, X. Chen, C. Sun, B. Zhou, Y. Zhang, Appl. Microbiol. Biotechnol. 84(6), 1107–1115 (2009)

    PubMed  CAS  Google Scholar 

  • M.C. Gutierrez, M. Kamekura, M.L. Holmes, M.L. Dyall-Smith, A. Ventosa, Extremophiles 6(6), 479–483 (2002)

    PubMed  Google Scholar 

  • J. Heyrman, A. Balcaen, P. De Vos, J. Swings, Int. J. Syst. Evol. Microbiol. 52(6), 2049–2054 (2002)

    PubMed  CAS  Google Scholar 

  • F.F. Hezayen, B.J. Tindall, A. Steinbuchel, B.H.A. Rehm, Int. J. Syst. Evol. Microbiol. 52(6), 2271–2280 (2002)

    PubMed  CAS  Google Scholar 

  • C. Hinteregger, F. Streichsbier, Biotechnol. Lett. 19, 1099–1102 (1997)

    CAS  Google Scholar 

  • T.Y. Huang, K.J. Duan, S.Y. Huang, C.W. Chen, J. Ind. Microbiol. Biotechnol. 33(8), 701–706 (2006)

    PubMed  CAS  Google Scholar 

  • J.F. Imhoff, FEMS Microbiol. Rev. 39, 57–66 (1986)

    CAS  Google Scholar 

  • J.F. Imhoff, F. Rodriguez-Valera, J. Bacteriol. 160, 478–479 (1984)

    PubMed  CAS  Google Scholar 

  • J.F. Imhoff, B. Thiemann, Arch. Microbiol. 156, 370–375 (1991)

    CAS  Google Scholar 

  • M. Ishikawa, S. Ishizaki, Y. Yamamoto, K. Yamasato, J. Gen. Appl. Microbiol. 48(5), 269–279 (2002)

    PubMed  CAS  Google Scholar 

  • B. Javor, Hypersaline Environments. Microbiology and Biogeochemistry (Springer, Berlin, 1989)

    Google Scholar 

  • W.A. Joo, C.W. Kim, J. Chrom. B. 815, 237–250 (2005)

    CAS  Google Scholar 

  • A.A. Joshi, P.P. Kanekar, A.S. Kelkar, S.S. Sarnaik, Y. Shouche, A. Wani, J. Basic Microbiol. 47, 213–221 (2007)

    PubMed  CAS  Google Scholar 

  • A.A. Joshi, P.P. Kanekar, A.S. Kelkar, Y.S. Shouche, A.A. Vani, S.B. Borgave, S.S. Sarnaik, Microb. Ecol. 55, 163–172 (2008)

    PubMed  Google Scholar 

  • M. Kamekura, Extremophiles 2, 289–296 (1998)

    PubMed  CAS  Google Scholar 

  • M. Kamekura, M.L. Dyall-Smith, J. Gen. Appl. Microbiol. 41, 333–350 (1995)

    CAS  Google Scholar 

  • S. Kanodia, M.F. Roberts, Proc. Natl. Acad. Sci. U.S.A. 80, 5217–5221 (1983)

    PubMed  CAS  Google Scholar 

  • I.K. Kapdan, B. Boylan, J. Chem. Technol. Biotechnol. 84, 34–38 (2009)

    CAS  Google Scholar 

  • I.K. Kapdan, B. Erten, Process Biochem. 42, 449–453 (2007)

    CAS  Google Scholar 

  • M. Kates, FEMS Microbiol. Lett. 39, 95–101 (1986)

    CAS  Google Scholar 

  • M. Kates, Archaebacterial lipids: structure, biosynthesis and function. Biochem. Soc. Symp. 58, 51–72 (1992)

    PubMed  CAS  Google Scholar 

  • K. Kawasaki, Y. Nogim, M. Hishinuma, Y. Nodasaka, H. Matsuyama, I. Yumoto, Int. J. Syst. Evol. Microbiol. 52(5), 1455–1459 (2002)

    PubMed  Google Scholar 

  • D.P. Kelly, A.P. Wood, Int. J. Syst. Evol. Microbiol. 50, 511–516 (2000)

    PubMed  Google Scholar 

  • R.K.H. Kinne, J. Exp. Zool. 265, 346–355 (1993)

    PubMed  CAS  Google Scholar 

  • S. Kolp, M. Pietsch, E.A. Galinski, M. Gutschow, Biochem. Biophys. Acta. 1764, 1234–1242 (2006)

    PubMed  CAS  Google Scholar 

  • M. Kubo, J. Hiroe, M. Murakami, H. Fukami, T. Tachiki, J. Biosci. Bioeng. 91, 222–224 (2001)

    PubMed  CAS  Google Scholar 

  • S.O. Kulkarni, P.P. Kanekar, S.S. Nilegaonkar, S.S. Sarnaik, J.P. Jog, Bioresour. Technol. 101, 9765–9771 (2010)

    PubMed  CAS  Google Scholar 

  • D.J. Kushner, Microbial Life in Extreme Environments (Academic Press, London, 1978), pp. 317–368

    Google Scholar 

  • D.J. Kushner, in The Biology of Halophilic Bacteria, ed. by R.H. Vreeland, L.I. Hochstein (CRC Press, Inc, Boca Raton, 1993), pp. 87–103

    Google Scholar 

  • M.C. Lai, K.R. Sowers, D.E. Robertson, M.F. Roberts, R.P. Gunsalus, J. Bacteriol. 173, ­5352–5358 (1991)

    PubMed  CAS  Google Scholar 

  • P. Lamosa, A. Burke, R. Peist, R. Huber, M.Y. Liu, G. Silva, C. Rodrigues-Pousada, J. LeGall, C. Maycock, H. Santos, Appl. Environ. Microbiol. 66, 1974–1979 (2000)

    PubMed  CAS  Google Scholar 

  • J.K. Lanyi, Bacteriol. Rev. 38(3), 272–290 (1974)

    PubMed  CAS  Google Scholar 

  • H. Larsen, FEMS Microbial. Rev. 39, 3–7 (1986)

    CAS  Google Scholar 

  • J.G. Lillo, F. Rodriguez-Valera, Appl. Environ. Microbiol. 56, 2517–2521 (1990)

    PubMed  Google Scholar 

  • K. Lippert, E.A. Galinski, Appl. Microbiol. Biotechnol. 37, 61–65 (1992)

    CAS  Google Scholar 

  • C.D. Litchfield, P.M. Gillevet, J. Ind. Microbiol. Biotechnol. 28(1), 48–55 (2002)

    PubMed  CAS  Google Scholar 

  • C. Lizama, M. Monteoliva-Sanchez, A. Suarez-Garcia, R. Rosello-Mora, M. Aguilera, V. Campos, A. Ramos-Cormenzana, Int. J. Syst. Evol. Microbiol. 52(1), 149–155 (2002)

    PubMed  CAS  Google Scholar 

  • M.C. Macian, W. Ludwig, K.H. Schleifer, E. Garay, M.J. Pujalte, Int. J. Syst. Evol. Microbiol. 51(4), 1283–1289 (2001)

    PubMed  CAS  Google Scholar 

  • D. Madern, C. Ebel, G. Zaccai, Extremophiles 4, 91–98 (2000)

    PubMed  CAS  Google Scholar 

  • D.D. Martin, R.A. Ciulla, P.M. Robinson, M.F. Roberts, Biochem. Biophys. Acta. 1524, 1–10 (2001)

    PubMed  CAS  Google Scholar 

  • D.D. Martin, D.H. Bartlett, M.F. Roberts, Extremophiles 6, 507–514 (2002)

    PubMed  CAS  Google Scholar 

  • M. Martinez-Canovas, E. Quesada, I. Llamas, V. Bejar, Int. J. Syst. Evol. Microbiol. 54, 733–737 (2004)

    PubMed  CAS  Google Scholar 

  • R.M. Martinez-Espinosa, B. Zafrilla, M. Camacho, M.J. Bonete, Biocatal. Biotransform. 25, 295–300 (2007)

    CAS  Google Scholar 

  • L.O. Martins, L.S. Carreto, M.S. da Costa, H. Santos, J. Bacteriol. 178, 5644–5651 (1996)

    PubMed  CAS  Google Scholar 

  • J.A. Mata, J. Martínez-Cánovas, E. Quesada, V. Béjar, Syst. Appl. Microbiol. 25, 360–375 (2002)

    PubMed  CAS  Google Scholar 

  • I.M. Mathrani, D.R. Boonem, R.A. Mah, G.E. Fox, P.P. Lau, Int. J. Syst. Bacteriol. 38(2), 139–142 (1988)

    PubMed  CAS  Google Scholar 

  • T.J. McGenity, R.T. Gemmell, W.D. Grant, H. Stan-Lotter, Environ. Microbiol. 2(3), 243–250 (2000)

    PubMed  CAS  Google Scholar 

  • L.D. Mermestein, J.G. Zeikus, in Extremophiles: Microbial Life in Extreme Environments, ed. by K. Horikoshi, W.D. Grant (Wiley-Liss, New York, 1998)

    Google Scholar 

  • M. Mevarech, F. Frolow, L.M. Gloss, Biophys. Chem. 86, 155–164 (2000)

    PubMed  CAS  Google Scholar 

  • B.N. Mijts, B.K.C. Patel, Microbiology 148, 2343–2349 (2002)

    PubMed  CAS  Google Scholar 

  • M.D.L. Moreno, M.T. Garcia, A. Ventosa, E. Mellado, FEMS Microbiol. Ecol. 68, 59–71 (2009)

    Google Scholar 

  • G. Mothes, T. Schubert, H. Harms, T. Maskow, Eng. Life Sci. 8, 658–662 (2008)

    CAS  Google Scholar 

  • V. Müller, A. Oren, Extremophiles 7(4), 261–266 (2003)

    PubMed  Google Scholar 

  • D.S. Nichols, T.A. McMeekin, J. Microbiol. Methods 48(2–3), 161–170 (2002)

    PubMed  CAS  Google Scholar 

  • A. Nyyssölä, M. Leisola, Arch. Microbiol. 176, 294–300 (2001)

    PubMed  Google Scholar 

  • A. Nyyssölä, J. Kerovuo, P. Kaukinen, N. von Weymarn, T. Reinikaiuem, J. Biol. Chem. 275, 22196–22201 (2000)

    PubMed  Google Scholar 

  • T. Ochsenreiter, F. Pfeifer, C. Schleper, Extremophiles 6(4), 267–274 (2002)

    PubMed  CAS  Google Scholar 

  • B. Ollivier, P. Caumette, J.L. Garcia, R.A. Mah, Microbiol. Rev. 58, 27–38 (1994)

    PubMed  CAS  Google Scholar 

  • A. Onraedt, C. De Muynck, B. Walcarius, W. Soetaert, E. Vandamme, Biotechnol. Lett. 26, ­1481–1485 (2004)

    PubMed  CAS  Google Scholar 

  • A. Oren, FEMS Microbiol. Rev. 13, 415–440 (1994)

    CAS  Google Scholar 

  • A. Oren, J. Ind. Microbiol. Biotechnol. 28, 56–63 (2002)

    PubMed  CAS  Google Scholar 

  • A. Oren, Saline Syst. 4, 2 (2008)

    PubMed  Google Scholar 

  • A. Oren, Environ. Technol. 31(8–9), 825–834 (2010)

    PubMed  CAS  Google Scholar 

  • A. Oren, M. Ginzburg, B.Z. Ginzburg, L.I. Hochstein, B.E. Volcani, Int. J. Syst. Bacteriol. 40(2), 209–210 (1990)

    PubMed  CAS  Google Scholar 

  • A. Oren, M. Heldal, S. Nordland, Can. J. Microbiol. 43, 588 (1997)

    CAS  Google Scholar 

  • F. Perez-Pomares, V. Bautica, J. Ferrer, C. Pire, E.F.C. Marhuenda, M.J. Bonete, Extremophiles 7, 299–306 (2003)

    PubMed  CAS  Google Scholar 

  • K.J. Pflughoeft, K. Kierek, P.I. Watnick, Appl. Environ. Microbiol. 69, 5919–5927 (2003)

    PubMed  CAS  Google Scholar 

  • S. Prakash, Y. Veeranagouda, L. Kyoung, K. Sreeramulu, World J. Microbiol. Biotechnol. 25(2), 197–204 (2009)

    CAS  Google Scholar 

  • J. Quillaguaman, S. Hasher, F. Bento, B. Mattiasson, R. Hatti-Kaul, J. Appl. Microbiol. 99, 151–157 (2005)

    PubMed  CAS  Google Scholar 

  • J. Quillaguaman, O. Delgado, B. Mattiasson, R. Hatti-Kaul, Enzyme Microb. Technol. 38, 148–154 (2006)

    CAS  Google Scholar 

  • J. Quillaguaman, M. Munoz, B. Mattiasson, Appl. Microbiol. Biotechnol. 74, 981–986 (2007)

    PubMed  CAS  Google Scholar 

  • J. Quillaguaman, T. Doan-Van, H. Guzman, M.J. Guzman, A. Everest, R. Hatti-Kaul, Appl. Microbiol. Biotechnol. 78, 227–232 (2008)

    PubMed  CAS  Google Scholar 

  • C. Radax, C. Gruber, H. Stan-Lotter, Extremophiles 5, 221–228 (2001)

    PubMed  CAS  Google Scholar 

  • R. Raj, S. Hemaiswarya, R. Rengasamy, Appl. Microbiol. Biotechnol. 74, 517–523 (2007)

    Google Scholar 

  • R.H. Reed, W.D.P. Stewart, in Biochemistry of the Algae and Cyanobacteria, ed. by L.J. Rogers, J.R. Gallon (Claredon Press, Oxford, 1988), p. 217

    Google Scholar 

  • R.H. Reed, L.J. Borowitzka, M.A. Mackay, J.A. Chudek, R. Foster, S.R.C. Warr, D.J. Moore, W.D.P. Steart, FEMS Microbiol. Rev. 39, 51–56 (1986)

    CAS  Google Scholar 

  • R.H. Reed, D.L. Richardson, W.D.P. Stewart, Osmotic response of unicellular blue-green algae (cyanobacteria): changes in cell volume and intracellular solute levels in response to hyperosmotic treatment. Plant Cell Environ. 9, 25–31 (1986)

    Google Scholar 

  • R. Regev, I. Peri, H. Gilboa, Y. Avi-Dor, Arch. Biochem. Biophys. 278, 106–112 (1990)

    PubMed  CAS  Google Scholar 

  • R. Riffat, K. Krongthamchat, Water Environ. Res. 79, 191–198 (2007)

    PubMed  CAS  Google Scholar 

  • M.J. Rijkenberg, K. Remco, K.J. Hellingwerf, Arch. Microbiol. 175(5), 369–375 (2001)

    PubMed  CAS  Google Scholar 

  • D. Ritter, J.H. Yopp, Arch. Microbiol. 159, 435–439 (1993)

    CAS  Google Scholar 

  • M.F. Roberts, Saline Syst 1, 5 (2005)

    PubMed  Google Scholar 

  • M.F. Roberts, B.S. Choi, D.E. Robertson, S. Lesage, J. Biol. Chem. 265, 18207–18212 (1990)

    PubMed  CAS  Google Scholar 

  • M.F. Roberts, M.C. Lai, R.P. Gunsalus, J. Bacteriol. 174, 6688–6693 (1992)

    PubMed  CAS  Google Scholar 

  • D.E. Robertson, D. Noll, M.F. Roberts, J.A. Menaia, D.R. Boone, Appl. Environ. Microbiol. 56, 563–565 (1990a)

    PubMed  CAS  Google Scholar 

  • D.E. Robertson, M.F. Roberts, N. Belay, K.O. Stetter, D.R. Boone, Appl. Environ. Microbiol. 56, 1504–1508 (1990b)

    PubMed  CAS  Google Scholar 

  • D.E. Robertson, D. Noll, M.F. Roberts, Free amino acid dynamics in marine methanogens beta-Amino acids as compatible solutes. J. Biol. Chem. 267(21), 14893–14901 (1992)

    PubMed  CAS  Google Scholar 

  • A. Roder, E. Hoffmann, M. Hagemann, G. Berg, FEMS Microbiol. Lett. 243, 219–226 (2005)

    PubMed  CAS  Google Scholar 

  • F. Rodríguez-Valera, in Biology of Halophilic Bacteria, ed. by R. Vreeland, L. Hochstein (CRC Press, Boca Raton, 1993), pp. 1–23

    Google Scholar 

  • L.A. Romanenko, P. Schumann, M. Rohde, A.M. Lysenko, V.V. Mikhailov, E. Stackebrandt, Int. J. Syst. Evol. Microbiol. 52(4), 1291–1297 (2002a)

    PubMed  CAS  Google Scholar 

  • L.A. Romanenko, P. Schumann, M. Rohde, V.V. Mikhailov, E. Stackebrandt, Int. J. Syst. Evol. Microbiol. 52(5), 1767–1772 (2002b)

    PubMed  CAS  Google Scholar 

  • C. Sánchez-Porro, E. Mellado, C. Bertoldo, G. Antranikian, A. Ventosa, Extremophiles 7, 221–228 (2003)

    PubMed  Google Scholar 

  • H. Schlesner, P.A. Lawson, M.D. Collins, N. Weiss, U. Wehmeyer, H. Völker, M. Thomm, Int. J. Syst. Evol. Microbiol. 51(2), 425–431 (2001)

    PubMed  CAS  Google Scholar 

  • R.J. Seeley, D.E. Farney, J. Biol. Chem. 258, 10835–10838 (1983)

    Google Scholar 

  • M.E. Setati, Afr. J. Biotechnol. 9(11), 1555–1560 (2010)

    CAS  Google Scholar 

  • Z. Silva, N. Borges, L.O. Martins, R. Wait, M.S. da Costa, H. Santos, Extremophiles 3, 163–172 (1999)

    PubMed  CAS  Google Scholar 

  • C. Simon-Colin, G. Raguenes, J. Cozien, J.G. Guezennec, J. Appl. Microbiol. 104, 1425–1432 (2008)

    PubMed  CAS  Google Scholar 

  • L.T. Smith, G.M. Smith, J. Bacteriol. 171, 4714–4717 (1989)

    PubMed  CAS  Google Scholar 

  • K.R. Sowers, D.E. Robertson, D. Noll, R.P. Gunsalus, M.F. Roberts, Proc. Natl. Acad. Sci. USA 87, 9083–9087 (1990)

    PubMed  CAS  Google Scholar 

  • T. Sripo, A. Phongdara, C. Wanapu, A.B. Caplan, J. Biotechnol. 95(2), 171–179 (2002)

    PubMed  CAS  Google Scholar 

  • H. Stan-Lotter, T.J. McGenity, A. Legat, E.B.M. Denner, K. Glaser, K.O. Stetter, G. Wanner, Microbiology 145, 3565–3574 (1999)

    PubMed  CAS  Google Scholar 

  • H. Stan-Lotter, M. Pfaffenhuemer, A. Legat, H.J. Busse, C. Radax, C. Gruber, Int. J. Syst. Evol. Microbiol. 52, 1807–1814 (2002)

    PubMed  CAS  Google Scholar 

  • I.W. Sutherland, in Biotechnology of Microbial Exopolysaccharides, ed. by J. Baddiley,N.H. Higgins, W.G. Potter. Cambridge studies in Biotechnology, vol. 9 (Cambridge University Press, Cambridge, 1990)

    Google Scholar 

  • I.W. Sutherland, Trends Biotechnol. 16, 41–46 (1998)

    PubMed  CAS  Google Scholar 

  • K. Takai, T. Komatsu, F. Inagaki, K. Horikoshi, Appl. Environ. Microbiol. 67(8), 3618–3629 (2001)

    PubMed  CAS  Google Scholar 

  • B. Thiemann, J.F. Imhoff, Arch. Microbiol. 156, 376–384 (1991)

    CAS  Google Scholar 

  • B.J. Tindall, in The Prokaryotes, ed. by A.J. Balows, vol. 1, 2nd edn. (Springer-Verlag, New York, 1991), pp. 754–808

    Google Scholar 

  • M.P. Tombs, S.E. Harding, An introduction to Polysaccharide Biotechnology (Taylor & Francis, London, 1998)

    Google Scholar 

  • G.K. Veena, N. Vasudevan, Int. J. Biotech. Biochem. 6(5), 783–791 (2010)

    Google Scholar 

  • A. Ventosa, J.J. Nieto, A. Oren, Microbiol. Mol. Biol. Rev. 62(2), 504–544 (1998)

    PubMed  CAS  Google Scholar 

  • R.H. Vreeland, R. Anderson, R.G. Murray, J. Bacteriol. 160(3), 879–883 (1984)

    PubMed  CAS  Google Scholar 

  • R.H. Vreeland, S. Straight, J. Krammes, K. Dougherty, W.D. Rosenzweig, M. Kamekura, Extremophiles 6(6), 445–452 (2002)

    PubMed  CAS  Google Scholar 

  • M. Waino, K. Ingvorsen, Extremophiles 7, 87–93 (2003)

    PubMed  CAS  Google Scholar 

  • P.L. Wejse, K. Ingvorsen, K.K. Mortensen, Extremophiles 7, 423–431 (2003)

    PubMed  CAS  Google Scholar 

  • D.T. Welsh, Y.E. Lindsay, P. Caumette, R.A. Herbert, J. Hannan, FEMS Microbiol. Lett. 140, 203–207 (1996)

    CAS  Google Scholar 

  • C. Woese, The Archaea: their history and significance, in The Biochemistry of Archaea (Archaebacteria), ed. by M. Kates, D. Kushner, A. Matheson (Elsevier, Amsterdam, 1993), pp. vii–xxix

    Google Scholar 

  • C.R. Woese, L.J. Magrum, G.E. Fox, J. Mol. Evol. 11, 245–252 (1978)

    PubMed  CAS  Google Scholar 

  • M.M. Yakimov, L. Giuliano, T.N. Chernikova, G. Gentile, W.R. Abraham, H. Lünsdorf,K.N. Timmis, P.N. Golyshin, Int. J. Syst. Evol. Microbiol. 51(6), 2133–2143 (2001)

    PubMed  CAS  Google Scholar 

  • P.H. Yancey, M.E. Clark, S.C. Hand, R.D. Bowlus, G.N. Somero, Science 217, 1212–1222 (1982)

    Google Scholar 

  • X. Yi, Z. Peijin, T. Xinyu, Int. J. Syst. Bacteriol. 49, 261–266 (1999)

    Google Scholar 

  • X. Yi, W. Zhenxiong, X. Yanfen, Z. Peijin, M. Yanhe, A. Ventosa, W.D. Grant, Int. J. Syst. Evol. Microbiol. 51(5), 1693–1698 (2001)

    Google Scholar 

  • Y. Yonezawa, H. Tokunaga, M. Ishibashi, S. Taura, M. Tokunaga, Protein Expr. Purif. 27(1), ­128–133 (2003)

    PubMed  CAS  Google Scholar 

  • J.H. Yoon, S.H. Choi, K.C. Lee, Y.H. Kho, K.H. Kang, Y.H. Park, Int. J. Syst. Evol. Microbiol. 51(3), 1171–1177 (2001)

    PubMed  CAS  Google Scholar 

  • J.H. Yoon, K.C. Lee, Y.H. Kho, K.H. Kang, C.J. Kim, Y.H. Park, Int. J. Syst. Evol. Microbiol. 52(1), 123–130 (2002a)

    PubMed  CAS  Google Scholar 

  • J.H. Yoon, K.H. Kang, Y.H. Park, Int. J. Syst. Evol. Microbiol. 52(6), 2043–2048 (2002b)

    PubMed  CAS  Google Scholar 

  • H.H. Zahran, Biol. Fertil. Soils 25, 211–223 (1997)

    CAS  Google Scholar 

  • W. Zhang, Y. Xue, Y. Ma, P. Zhou, A. Ventosa, W.D. Grant, Int. J. Syst. Evol. Microbiol. 52(3), 789–793 (2002)

    PubMed  CAS  Google Scholar 

  • T.N. Zhilina, G.A. Zavarzin, FEMS Microbiol. Rev. 87, 315–322 (1990)

    CAS  Google Scholar 

  • T.N. Zhilina, E.S. Garnova, T.P. Turova, N.A. Kostrikina, G.A. Zavarzin, Mikrobiologiia 70(1), 77–85 (2001)

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Kanekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Netherlands

About this chapter

Cite this chapter

Kanekar, P.P., Kanekar, S.P., Kelkar, A.S., Dhakephalkar, P.K. (2012). Halophiles – Taxonomy, Diversity, Physiology and Applications. In: Satyanarayana, T., Johri, B. (eds) Microorganisms in Environmental Management. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2229-3_1

Download citation

Publish with us

Policies and ethics