Skip to main content

Heat Stress in Rice – Physiological Mechanisms and Adaptation Strategies

  • Chapter
  • First Online:

Abstract

Heat stress is a present day hot topic in the world as it throws great challenges before the scientific world by adversely affecting the crop plants and their yield, the need for resilience in all aspects of the crop and resilient varietal identification and improvement are the need of the hour. Here in this review, plant responses to heat stress morpho-anatomical and biochemical changes along the phenology were reported. Importance of physiological parameters in identifying heat tolerant varieties is a necessary prerequisite and is reliable and superior to all the screening procedures. The importance of the photorespiration and its role in final yield loss, as it has interwoven metabolic links with carbon and nitrogen metabolisms are specially focussed on evolutionary aspects. The changes in the hormonal ratio with phenology and molecular responses to heat stress, mechanism of heat tolerance and genetic improvement for heat-stress tolerance, fertigation role in tolerance is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbate PE, Andrade FH, Culot JP (1995) The effect of radiation and nitrogen on number of grains in wheat. J Agric Sci 124:351–360

    Google Scholar 

  • Agarwal SK, Agarwal M, Grover A (2003) Heat-tolerant basmati rice engineered by over-expression of hsp101. Plant Mol Biol 51:677–686

    Google Scholar 

  • Ahmadi A, Baker DA (1999) Effect of abscisic acid (ABA) on grain filling processes in wheat. Plant Growth Regul 28:187–197

    CAS  Google Scholar 

  • Ali AJ, Xu JL, Ismail AM et al (2006) Hidden diversity for abiotic and biotic stress tolerances in the primary gene pool of rice revealed by a large backcross breeding program. Field Crops Res 97:66–76

    Google Scholar 

  • Allen JF, Martin W (2007) Evolutionary biology: out of thin air. Nature 445:610–612

    PubMed  CAS  Google Scholar 

  • Al-Khatib k, Paulsen GM (1999) High-temperature effects on photosynthetic processes in temperate and tropical cereals. Crop Sci 39:119–125

    Google Scholar 

  • Almeselmani M, Deshmukh PS, Sairam RK et al (2006) Protective role of antioxidant enzymes under high temperature stress. Plant Sci 171:382–388

    CAS  Google Scholar 

  • Anon S, Fernandez JA, Franco JA et al (2004) Effects of water stress and night temperature preconditioning on water relations and morphological and anatomical changes of Lotus creticus plants. Sci Hortic 101:333–342

    Google Scholar 

  • Araus JL, Slafer GA, Reynolds MP et al (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot 89:925–940

    PubMed  Google Scholar 

  • Ash F, Andersen MN, Jensen CR et al (2001) Ovary abscisic acid concentration does not induce kernel abortion in field-grown maize subjected to drought. Eur J Agron 15:119–129

    Google Scholar 

  • Baker JT (2004) Yield responses of southern US rice cultivars to CO2 and temperature. Agric Meteorol 122:129–137

    Google Scholar 

  • Barlow EWR, Munns R, Scott NS et al (1977) Water potential, growth and polyribosome content of the stressed wheat apex. J Exp Bot 28:909–916

    Google Scholar 

  • Barnabas B, Katilinjager Feher A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38

    PubMed  CAS  Google Scholar 

  • Bartels D, Souer E (2004) Molecular responses of higher plants to dehydration. In: Hirt H, Shinozaki K (eds) Plant responses to abiotic stress. Springer, Berlin/Heidelberg

    Google Scholar 

  • Battaglia M, Solorzano RM, Hernandez M et al (2007) Proline-rich cell wall proteins accumulate in growing regions and phloem tissue in response to water deficit in common bean seedlings. Planta 225:1121–1133

    PubMed  CAS  Google Scholar 

  • Bennet J (2001) Summing-up: cutting-edge science for rice improvement-breakthroughs and beneficiaries. In: Goode J, Chadwick D (eds) Rice biotechnology: improving yield, stress tolerance and grain quality. Novartis FoundatioWiley, Chichester

    Google Scholar 

  • Berry J, Bjorkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31:491–543

    Google Scholar 

  • Bisalputra T, Downton WJS, Tregunna EB (1969) The distribution and ultra structure of chloroplasts in leaves differing in photosynthetic carbon metabolism. I. Wheat, sorghum. Can J Bot 47:15–21

    CAS  Google Scholar 

  • Bjorkman O, Mooney HA, Ehleringer J (1975) Photosynthetic responses of plants from habitats with contrasting thermal environments; comparisons of photosynthetic characteristics of intact plants. Carnegie Inst Wash Yearb 74:743–748

    Google Scholar 

  • Blum A (1988) Plant breeding for stress environments. CRC Press, Boca Raton

    Google Scholar 

  • Blum A (1998) Improving wheat grain filling under stress by stem reserve mobilisation. Euphytica 100:77–83

    Google Scholar 

  • Blum A (2005) Drought resistance, water-use efficiency, and yield potential – are they compatible, dissonant, or mutually exclusive? Aust J Agric Res 56:1159–1168

    Google Scholar 

  • Blum A, Sinmena B, Mayer J et al (1994) Stem reserve mobilisation supports wheat grain filling under heat stress. Aust J Plant Physiol 21:771–781

    Google Scholar 

  • Bohnert HJ, Gong Q, Li P et al (2006) Unraveling abiotic stress tolerance mechanisms getting genomics going. Curt Opin Plant Biol 9:180–188

    CAS  Google Scholar 

  • Bouman BAM, Peng S, Castaòeda AR et al (2005) Yield and water use of irrigated tropical aerobic rice systems. Agric Water Manage 74:87–105

    Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    PubMed  CAS  Google Scholar 

  • Boyer JS, Westgate ME (2004) Grain yields with limited water. J Exp Bot 55:2385–2394

    PubMed  CAS  Google Scholar 

  • Brar DS, Khush GS (1997) Alien introgression in rice. Plant Mol Biol 35:35–47

    PubMed  CAS  Google Scholar 

  • Bray EA (2002) Abscisic acid regulation of gene expression during water-deficit stress in the era of the Arabidopsis genome. Plant Cell Environ 25:153–161

    PubMed  CAS  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. ASPB, Rockville

    Google Scholar 

  • Bukhov NG, Wiese C, Neimanis S et al (1999) Heat sensitivity of chloroplasts and leaves: leakage of protons from thylakoids and reversible activation of cyclic electron transport. Photosynth Res 59:81–93

    CAS  Google Scholar 

  • Cakmak I (2005) The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci 168:521–530

    CAS  Google Scholar 

  • Calvin M, Bassham JA (1962) The photosynthesis of carbon compounds. W.A. Benjamin, New York

    Google Scholar 

  • Camejo D, Jimenez A, Alarcon JJ et al (2006) Changes in photosynthetic parameters and antioxidant activities following heat-shock treatment in tomato plants. Funct Plant Biol 33:177–187

    CAS  Google Scholar 

  • Canfeld DE (2005) The early history of atmospheric oxygen: Homage to Robert M. Garrels. Annu Rev Earth Planet Sci 33:1–36

    Google Scholar 

  • Cao LY, Zhu J, Zhao ST et al (2002) Mapping QTLs for heat tolerance in a DH population from indicajaponoca cross of rice (Oryza sativa). J Agric Biotechnol 10:210–214

    Google Scholar 

  • Cao LY, Zhao JG, Zhan XD (2003) Mapping QTLs for heat tolerance and correlation between heat tolerance and photosynthetic rate in rice. Chin J Rice Sci 17:223–227

    CAS  Google Scholar 

  • Cegelski L, Schaefer J (2006) NMR determination of photorespiration in intact leaves using in vivo 13CO2 labelling. J Magn Reson 178:1–10

    PubMed  CAS  Google Scholar 

  • Cerezo M, Garcia-Agustin P, Primo-Millo E (1999) Influence of chloride and transpiration on net 15NO3 – uptake rate by citrus roots. Ann Bot 84:117–120

    CAS  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought: from genes to the whole plant. Funct Plant Biol 30:239–264

    CAS  Google Scholar 

  • Chen WJ, Zhu T (2004) Networks of transcription factors with roles in environmental stress response. Trends Plant Sci 9:591–596

    PubMed  CAS  Google Scholar 

  • Chen W, Provart NJ, Glazebrook J et al (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14:559–574

    PubMed  CAS  Google Scholar 

  • Chen QQ, Yu SB, Li CH et al (2008) Identification of QTLs for heat tolerance at flowering stage in rice. Sci Agric Sin 41:315–321

    CAS  Google Scholar 

  • Chen W, Yao X, Cai K et al (2010) Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biol Trace Elem Res. doi:10.1007/s12011-010-8742-x

  • Cominelli E, Galbiati M, Vavasseur A et al (2005) A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol 15:1196–1200

    PubMed  CAS  Google Scholar 

  • Cowan IR (1977) Stomatal behaviour and environment. Adv Bot Res 4:117–228

    Google Scholar 

  • Crafts-Brandner SJ, Law RD (2000) Effect of heat stress on the inhibition and the recovery of the ribulose-1,5-bisphosphate carboxylase/oxygenase activation state. Planta 212:67–74

    PubMed  CAS  Google Scholar 

  • Crookston RK, Otoole J, Lee R et al (1974) Photosynthetic depression in beans after exposure to cold for one night. Crop Sci 14:457–464

    CAS  Google Scholar 

  • Davies WJ, Jones HG (1991) Abscisic acid: physiology and biochemistry. BIOS Scientific Publishers, Oxford

    Google Scholar 

  • De Block M, Verduyn C, De Brouwer D et al (2005) Poly (ADPribose) polymerase in plants affects energy homeostasis, cell death and stress tolerance. Plant J 41:95–106

    PubMed  Google Scholar 

  • De Ronde JAD, Cress WA, Kruger GHJ et al (2004) Photosynthetic response of transgenic soybean plants containing an Arabidopsis P5CR gene, during heat and drought stress. J Plant Physiol 61:1211–1244

    Google Scholar 

  • Delhon P, Gojon A, Tillard P et al (1995) Diurnal regulation of NO3- uptake in soybean plants II. Relationship with accumulation of NO3- and asparagine in the roots. J Exp Bot 46:1595–1602

    CAS  Google Scholar 

  • Dembinska O, Lalonde S, Saini HS (1992) Evidence against the regulation of grain set by spikelet abscisic-acid levels in water stressed wheat. Plant Physiol 100:1599–1602

    PubMed  CAS  Google Scholar 

  • Demotes-Mainard S, Jeuffroy MH (2004) Effects of nitrogen and radiation on dry matter and nitrogen accumulation in the spike of winter wheat. Field Crops Res 87:221–233

    Google Scholar 

  • Downess RW (1970) Effect of light intensity and leaf temperature on photosynthetic and transpiration in wheat and sorgham. Aust J Biol Sci 23:775–782

    Google Scholar 

  • Downess RW, Hesketh JD (1968) Enhanced photosynthesis at low oxygen concentration. Differential responses of temperate and tropical grasses. Planta 78:79–84

    Google Scholar 

  • Downs CA, Heckathorn SA (1998) The mitochondrial small heat-shock protein protects NADH: ubiquinone oxidoreductase of the electron transport chain during heat stress in plants. FEBS Lett 430:246–250

    PubMed  CAS  Google Scholar 

  • Downton WJS, Tregunna EB (1968) Carbon dioxide compensation – its relation to photosynthetic carboxylation reactions, systematics of the Graminae, and leaf anatomy. Can J Bot 46:207–215

    CAS  Google Scholar 

  • Drake BG, Salisbury FB (1972) After effects of low and high temperature pretreatments on leaf resistance, transcription and leaf temperature in Xanthium. Plant Physiol 50:572–575

    PubMed  CAS  Google Scholar 

  • Drake BG, Raschuke K, Salisbury FB (1970) Temperatures and transcription resistances of Xanthium leaves as effected by air temperature, humidity and wind speed. Plant Physiol 46:324–330

    PubMed  CAS  Google Scholar 

  • Dupont F, Altenbach S (2003) Molecular and biochemical impacts of environmental factors on wheat grain development and protein synthesis. J Cereal Sci 38:133–146

    CAS  Google Scholar 

  • Egeh AO (1991) High temperature effects on crop and grain growth of four rice cultivars. Ph.D. thesis, University of the Philippines at Low Banos, Philippines

    Google Scholar 

  • Eisenhut M, Ruth W, Haimovich M et al (2008) The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiotically to plants. Proc Natl Acad Sci USA 105:17199–17204

    PubMed  CAS  Google Scholar 

  • El-Sharkawy MA, Hesketh JD (1964) Effects of temperature and water deficit on leaf photosynthetic rates of different species. Crop Sci 4:514–518

    Google Scholar 

  • El-Sharkawy MA, Loomis RS, Williums WA (1968) Photosynthetic and respiratory exchanges of carbon dioxide by leaves of the grain Amaranth. J Appl Ecol 5:243–251

    Google Scholar 

  • Engel N, Daele KVD, Kolukisaoglu U et al (2007) Deletion of Glycine decarboxilase in Arabidopsis is lethal under non photorespiratory conditions. Plant Physiol 144:1328–1335

    PubMed  CAS  Google Scholar 

  • Fischer RA (1993) Irrigated spring wheat and timing and amount of nitrogen fertilizer, II. Physiology of grain yield response. Field Crops Res 33:57–80

    Google Scholar 

  • Fitter AH, Hay RKM (1987) Environmental physiology of plants. Academic, London

    Google Scholar 

  • Gebbing T, Schnyder H (1999) Pre-anthesis reserve utilization for protein and carbohydrate synthesis in grains of wheat. Plant Physiol 121:871–878

    PubMed  CAS  Google Scholar 

  • Gong M, Chen SN, Song YQ et al (1997) Effect of calcium and calmodulin on intrinsic heat tolerance in relation to antioxidant systems in maize seedlings. Aust J Plant Physiol 24:371–379

    CAS  Google Scholar 

  • Gong M, ver dan Luit AH, Knight MR et al (1998) Heat-shock induced changes in intracellular Ca2 level in tobacco seedlings in relation to thermotolerance. Plant Physiol 116:429–437

    CAS  Google Scholar 

  • Griffin JJ, Ranney TG, Pharr DM (2004) Heat and drought influence photosynthesis and water relations, and soluble carbohydrates of two ecotypes of redbud (Cercis canadensis). J Am Soc Hortic Sci 129:497–502

    CAS  Google Scholar 

  • Grove RMW, Keys AJ, Lea PJ et al (1983) Photorespiration and nitrogen metabolism. Plant Cell Environ 6:301–309

    CAS  Google Scholar 

  • Guo YP, Zhou HF, Zhang LC (2006) Photosynthetic characteristics and protective mechanisms against photooxidation during high temperature stress in two citrus species. Sci Hortic 108:260–267

    CAS  Google Scholar 

  • Guy C (1999) The influence of temperature extremes on gene expression, genomic structure, and the evolution of induced tolerance in plants. In: Lerner HR (ed) Plant responses to environmental stresses. Marcel Dekker, New York

    Google Scholar 

  • Hall AE, Shulze ED, Lange OL (1976) Current perspectives of steady state stomatal responses to environment. In: Lange OL, Kappen L, Dshulze E (eds) Water and plant life, Ecol Stud. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Harding SA, Guikema JA, Paulsen GM (1990a) Photosynthetic decline from high temperature stress during maturation of wheat. I. Interaction with senescence processes. Plant Physiol 92:648–653

    PubMed  CAS  Google Scholar 

  • Harding SA, Guikema JA, Paulsen GM (1990b) Photosynthetic decline from high temperature stress during maturation of wheat. II. Interaction with source and sink processes. Plant Physiol 92:654–658

    PubMed  CAS  Google Scholar 

  • Hatch MD, Slack CR (1970) Photosynthetic CO2 fixation pathways. Annu Rev Plant Physiol 21:141–162

    CAS  Google Scholar 

  • Hatch MD, Slack CR, Johnson HS (1967) Further studies on a new pathway of photosynthetic carbon dioxide fixation in sugar-cane and its occurrence in other plant species. Biochem J 102:417–422

    PubMed  CAS  Google Scholar 

  • Heath OVS, Meidner H (1957) Effect of carbon dioxide and temperature on stomata of Allium cepa L. Nature 180:181–182

    CAS  Google Scholar 

  • Heath OVS, Orchard B (1957) Temperature effects on the minimum intercellular space carbon dioxide concentration. Nature 180:180–181

    CAS  Google Scholar 

  • Heber U (1974) Metabolic exchange between chloroplast and cytoplasm. Annu Rev Plant Physiol 25:393–421

    CAS  Google Scholar 

  • Hell muth EO (1971) Eco-physiological studies on plants in arid and semiarid regions in western Australia III. Comparative studies on photosynthesis, respiration and water relations of ten arid zone and two semi-arid zone plants under winter and late summer, Climatic conditions. J Ecol 59:225–259

    Google Scholar 

  • Hoffmann AA, Parsons PA (1991) Evolutionary genetics and environmental stress. Oxford University Press, Oxford

    Google Scholar 

  • Hofstra G, Hesketh JD (1969) The effect of temperature on stomatal aperture in different species. Can J Bot 47:1307–1310

    Google Scholar 

  • Holmberg N, Bülow L (1998) Improving stress tolerance in plants by gene transfer. Trends Plant Sci 3:61–66

    Google Scholar 

  • Horie T, Matsui T, Nakagawa H et al (1996) Effect of elevated CO2 and global climate change on rice yield in Japan. In: Omasa K, Kai K, Taoda H, Uchijima Z, Yoshino M (eds) Climate change and plants in east Asia. Springer, Tokyo

    Google Scholar 

  • Houghton JT, Jenkins GJ, Ephraums JJ (1990) Climate change: the IPCC scientific assessment. Cambridge University Press, Cambridge

    Google Scholar 

  • Howarth CJ (2005) Genetic improvements of tolerance to high temperature. In: Ashraf M, Harris PJC (eds) Abiotic stresses: plant resistance through breeding and molecular approaches. Howarth Press Inc, New York

    Google Scholar 

  • Imai K, Coleman DF, Yanagisawa T (1985) Increase of atmospheric partial pressure of carbon dioxide and growth and yield of rice (Oryza sativa L.). Jpn J Crop Sci 54:413–418

    CAS  Google Scholar 

  • Iwamoto M, Maekawa M, Saito A et al (1998) Evolutionary relationship of plant catalase genes inferred from exonintron structures: isozyme divergence after the separation of monocots and dicots. Theor Appl Genet 97:9–19

    CAS  Google Scholar 

  • Jagadish SVK, Craufurd PQ, Wheeler TR (2007) High temperature stress and spikelet fertility in rice (Oryza sativa L.). J Exp Bot 58:1627–1635

    PubMed  CAS  Google Scholar 

  • Jagadish SVK, Muthurajan R, Oane R et al (2010) Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). J Exp Bot 61:143–156

    PubMed  CAS  Google Scholar 

  • Jiang Y, Haung B (2001) Plants and the environment. Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses. J Exp Bot 52:341–349

    PubMed  CAS  Google Scholar 

  • Joyce SM, Cassells AC, Mohan JS (2003) Stress and aberrant phenotypes in vitro culture. Plant Cell Tiss Org Cult 74:103–121

    CAS  Google Scholar 

  • Kaur N, Gupta AK (2005) Signal transduction pathways under abiotic stresses in plants. Curr Sci 88:1771–1780

    CAS  Google Scholar 

  • Kebeish R, Niessen M, Thiruveedhi K et al (2007) Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol 25:593–599

    PubMed  CAS  Google Scholar 

  • Keys AJ, Bird IF, Cornalius MJ et al (1984) The isolation and characterization of a catalase deficient mutant of Barly (Hordium vulgare L.). Planta 159:505–511

    Google Scholar 

  • Kim HY, Horie T, Nakagawa H et al (1996) Effects of elevated CO2 concentration and high temperature on growth and yield of rice. Jpn J Crop Sci 65:644–651

    CAS  Google Scholar 

  • Kim HY, Lieffering M, Kobayashi K et al (2003) Effects of free-air CO2 enrichment and nitrogen supply on the yield of temperate paddy rice crops. Field Crops Res 83:261–270

    Google Scholar 

  • Kimball BA, Kobayashi K, Bindi M (2002) Responses of agricultural crops to free-air CO2 enrichment. Adv Agron 77:293–386

    Google Scholar 

  • King RW, Evans LT (1977) Inhibition of flowering in Lolium temulentum L. by water stress: a role for abscisic acid. Aust J Plant Physiol 4:225–233

    CAS  Google Scholar 

  • Kiyomiya S, Nakanishi H, Uchida H et al (2001) Real time visualization of 13N-translocation in rice under different environmental conditions using positron emitting tracer imaging system. Plant Physiol 125:1743–1753

    PubMed  CAS  Google Scholar 

  • Kleinhenz MD, Palta JP (2002) Root zone calcium modulates the response of potato plants to heat stress. Physiol Plant 115:111–118

    PubMed  CAS  Google Scholar 

  • Kobata T, Uemuki N (2004) High temperatures during the grain-filling period do not reduce the potential grain dry matter increase of rice. Agron J 96:406–414

    Google Scholar 

  • Kolupaev Y, Akinina G, Mokrousov A (2005) Induction of heat tolerance in wheat coleoptiles by calcium ions and its relation to oxidative stress. Russ J Plant Physiol 52:199–204

    CAS  Google Scholar 

  • Komatsu E, Kogut A, Nolta MR, Bennett CL, Halpern M, Hinshaw G, Jarosik N, Limon M, Meyer SS, Page L, Spergel DN, Tucker GS, Wright EL (2003) First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Tests of Gaussianity. The Astrophysical Journal Supplement Series 148(1):119–134

    Google Scholar 

  • Komatsu S, Tanaka N (2004) Rice proteome analysis: A step toward functional analysis of the rice genome. Proteomics 4:938–949

    Google Scholar 

  • Lafitte HR, Li ZK, Vijayakumar CHM et al (2006) Improvement of rice drought tolerance through backcross breeding: evaluation of donors and selection in drought nurseries. Field Crops Res 97:77–86

    Google Scholar 

  • Lange OL, Schulze ED, Evenari M et al (1974) The temperature related photosynthetic capacity of plants under desert conditions I seasonal changes of the photosynthetic response to temperature. Oecologia 17:97–110

    Google Scholar 

  • Langridge P, Paltridge N, Fincher G (2006) Functional genomics of abiotic stress tolerance in cereals. Brief Funct Genomic Proteomic 4:343–354

    PubMed  CAS  Google Scholar 

  • Lee DG, Ahsan N, Lee SH, Kang KY, Bahk JD, Lee I-J, Lee B-H (2007) A proteomic approach in analyzing heat-responsive proteins in rice leaves. Proteomics, 7:3369–3383

    Google Scholar 

  • Liu F, Jensen CR, Andersen MN (2005) A review of drought adaptation in crop plants: changes in vegetative and reproductive physiology induced by ABA-based chemical signals. Aust J Agric Res 56:1245–1252

    CAS  Google Scholar 

  • Liu N, Ko S, Yeh K-C, Charng Y (2006) Isolation and characterization of tomato Hsa32 encoding a novel heat-shock protein. Plant Sci 170:976–985

    Google Scholar 

  • Long SP (1991) Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: has its importance been underestimated? Plant Cell Environ 14:729–739

    CAS  Google Scholar 

  • Losch R (1977) Response of stomata to environmental factors- experiments with isolated epidermal strips of Polypodium vulgare. I. Temperature and Humidity. Oecologia 29:85–97

    Google Scholar 

  • Losch R (1979) Response of stomata to environmental factors- experiments with isolated epidermal strips of Polypodium vulgare. II. Leaf bulk water potential, air humidity and temperature. Oecologia 39:229–238

    Google Scholar 

  • Maestri E, Klueva N, Perrotta C et al (2002) Molecular genetics of heat tolerance and heat shock proteins in cereals. J Plant Mol Biol 48:667–681

    CAS  Google Scholar 

  • Maheswari M, Nair TVR, Abrol YP (1988) Ammonium accumulation and glutamine synthatase activity in C3 and C4 plants. Proc Indian Acad Sci (Plant Sci), 98(3):199–204

    Google Scholar 

  • Maheswari M, Nair TVR, Abrol YP (1992) Ammonia metabolism in the leaves and ears of wheat (Triticum aestivum L.). During growth and development. I Agron Crop Sci 168:310–317

    Google Scholar 

  • Maheswari M, Nair TVR, Abrol YP (1993) Senescence and Nitrogen Remobilization. Proc Indian Acad Sci Acad B 59(3 & 4):245–256

    CAS  Google Scholar 

  • Matsui T, Omasa K (2002) Rice (Oryza sativa L.) cultivars tolerant to high temperature at flowering: Anther characteristics. Ann Bot Lond 89:683–687

    Google Scholar 

  • Matsui T, Namuco OS, Ziska LH et al (1997a) Effects of high temperature and CO2 concentration on spikelet sterility in indica rice. Field Crops Res 51:213–219

    Google Scholar 

  • Matsui T, Omasa K, Horie T (1997b) High temperature-induced spikelet sterility of japonica rice at flowering in relation to air temperature, humidity and wind velocity condition. Jpn J Crop Sci 66:449–455

    Google Scholar 

  • Matsui T, Omasa K, Horie T (2000) High temperatures at flowering inhibit swelling of pollen grains, a driving force for thecae dehiscence in rice (Oryza sativa L.). Plant Prod Sci 3:430–434

    Google Scholar 

  • Matsui T, Omasa K, Horie T (2001) The difference in sterility due to high temperatures during the flowering period among japonica rice varieties. Plant Prod Sci 4:90–93

    Google Scholar 

  • Matthews RB, Kropff MJ, Bachelet D, Van Laar HH (1995) Executive summary. In: Modelling the impact of climate change on rice production in Asia. CABI in association with IRRI, 13, Wallingford

    Google Scholar 

  • McDonald EP, Erickson JE, Kruger EL (2002) Can decreased transpiration limit plant nitrogen acquisition in elevated CO2? Funct Plant Biol 29:1115–1120

    Google Scholar 

  • Mishra SP, Mohapatra PK (1987) Soluble carbohydrates and floret fertility in wheat in relation to population density stress. Ann Bot 60:269–277

    Google Scholar 

  • Mishra NS, Tuteja R, Tuteja N (2006) Signaling through map kinase networks in plants. Arch Biochem Biophys 452:55–68

    PubMed  CAS  Google Scholar 

  • Momcilovic I, Ristic Z (2007) Expression of chloroplast protein synthesis elongation factor, EF-Tu, in two lines of maize with contrasting tolerance to heat stress during early stages of plant development. J Plant Physiol 164:90–99

    Google Scholar 

  • Moony HA (1978) Photosynthetic plasticity of populations of Heliotropium curassavicum L. originating from differing thermal regimes. Oecologia 45:372–376

    Google Scholar 

  • Moony HA, Bjorkman O, Collatz GJ (1978) Photosynthesis acclimation to temperature in the desert shrub, Larrea divaricate I. Carbon dioxide exchange characteristics of intact leaves. Plant Physiol 61:406–410

    Google Scholar 

  • Morell MK, Rahman S, Regina A et al (2001) Wheat starch biosynthesis. Euphytica 119:55–58

    CAS  Google Scholar 

  • Morison JIL, Lawlor DW (1999) Interactions between increasing CO2 concentration and temperature on plant growth. Plant Cell Environ 22:659–682

    CAS  Google Scholar 

  • Nagarajan S, Jagadish SVK, Prasad ASH et al (2010) Local climate effects growth, yield and grain quality of aromatic and non aromatic rice in north western India. Agric Ecosyst Environ 138:274–281

    Google Scholar 

  • Naheed G, Shahbaz M, Latif CA et al (2007) Alleviation of the adverse effects of salt stress on rice (Oryza sativa L.) by phosphorus applied through rooting medium: growth and gas exchange characteristics. Pak J Bot 39:729–737

    Google Scholar 

  • Nakagawa H, Horie T, Matsui T (2002) Effects of climate change on rice production and adaptive technologies. In: Mew TW, Brar DS, Peng S, Dawe D, Hardy B (eds) Rice science: innovations and impact for livelihood. International Rice Research Institute, China, pp 635–657

    Google Scholar 

  • Nakamoto H, Hiyama T (1999) Heat-shock proteins and temperature stress. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker, New York, pp 399–416

    Google Scholar 

  • Neilson RE, Ludlow MM, Jarvis PG (1972) Photosynthesis in Sitka spurce [Picea sitchensis (Bong.) Garr.]II. Response to temperature. J Appl Ecol 9:721–745

    Google Scholar 

  • Noctor G, Foyer C (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    PubMed  CAS  Google Scholar 

  • Ober ES, Setter TL, Madison JT et al (1991) Influence of water deficit on maize endosperm development. Enzyme activities and RNA transcripts of starch and zein synthesis, abscisic acid, and cell division. Plant Physiol 97:154–164

    PubMed  CAS  Google Scholar 

  • Oechel WC (1976) Seasonal patterns of temperature response of CO2 flux and acclimation in arctic mosses growing in situ. Photosynthetica 10:447–456

    Google Scholar 

  • Ogren WL, Hunt LD (1978) Comparitive biochemistry of ribulose bis phosphate carboxylase in higher plants. Basic Life Sci 11:127–128

    PubMed  CAS  Google Scholar 

  • Ohe I, Saitoh K, Kuroda T (2007) Effects of high temperature on growth, yield and dry-matter production of rice grown in the paddy field. Plant Prod Sci 10:412–422

    Google Scholar 

  • Pareek A, Singla SL, Grover A (1995) Immunological evidence for accumulation of two novel 104 and 90 kDa HSPs in response to diverse stresses in rice and in response to high temperature stress in diverse plant genera. Plant Mol Biol 29:293–300

    PubMed  CAS  Google Scholar 

  • Parry ML (1990) Climate change and world agriculture. Earthscan, London

    Google Scholar 

  • Pearcy RW (1977) Acclimation of photosynthetic and respiratory CO2 exchange to growth temperature in Atriplex lentiformis (Torr.) Wats. Plant Physiol 59:795–799

    PubMed  CAS  Google Scholar 

  • Pearcy RW (1978) Effect of growth temperature on the fatty acid composition of the leaf lipids in Atriplex lentiformis (Torr.) Wats. Plant Physiol 61:484–486

    PubMed  CAS  Google Scholar 

  • Peng SB, Huang JL, Sheehy JE et al (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA 101:9971–9975

    PubMed  CAS  Google Scholar 

  • Peterhansel C, Niessen M, Keibish RM (2008) Metabolic engineering towards the enhancement of photosynthesis. Photochem Photobiol 84:1317–1323

    PubMed  CAS  Google Scholar 

  • Plaut Z, Butow BJ, Blumenthal CS et al (2004) Transport of dry matter into developing wheat kernels and its contribution to grain yield under post anthesis water deficit and elevated temperature. Field Crops Res 86:185–198

    Google Scholar 

  • Porter JR, Moot DJ (1998) Research beyond the means: climatic variability and plant growth. In: Dalezios NR (ed) International symposium on applied agrometeorology and agroclimatology. Office for Official Publication of the European Commission, Luxembourg, pp 13–23

    Google Scholar 

  • Potvin C (1994) Interactive effects of temperature and atmospheric CO2 on physiology and growth. In: Alscher RB, Wellburn AR (eds) Plant responses to the gaseous environment, molecular, metabolic and physiological aspects. Chapman & Hall, London

    Google Scholar 

  • Prasad PVV, Boote KJ, Allen LH et al (2006) Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Res 95:398–411

    Google Scholar 

  • Queitsch SW, Vierling HE, Lindquest S (2000) Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 12:479–492

    Google Scholar 

  • Raison JK, Roberts JKM, Berry JA (1982) Correlations between the thermal stability of chloroplast (thylakoid) membranes and the composition and fluidity of their polar lipids upon acclimation of the higher plant, Neerium oleander, to growth. Biochim Biophys Acta 688:218–228

    CAS  Google Scholar 

  • Rampino P, Pataleo S, Gererdi C et al (2006) Drought response in wheat: physiological and molecular analysis of resistant and sensitive genotypes. Plant Cell Environ 29:2143–2152

    PubMed  CAS  Google Scholar 

  • Raschke K (1970) Temperature dependence of CO2 assimilation and stomatal aperture in leaf sections of Zea mays. Planta 91:336–363

    CAS  Google Scholar 

  • Raschke K (1975) Stomatal action. Annu Rev Plant Physiol 26:309–340

    CAS  Google Scholar 

  • Rees AR (1961) Midday closure of stomata in the oil palm Elacis guinensis. Jacq J Exp Bot 12:129–146

    Google Scholar 

  • Reumann S, Weber AP (2006) Plant peroxysomes respire in the light: some gaps in the photorespiratory C2 cycle have become filled-others remain. Biochem Biophys Acta 1763:1496–1510

    PubMed  CAS  Google Scholar 

  • Reyes-Prieto A, Weber APM, Bhattacharya D (2007) The origin and establishment of the plastid in algae and plants. Annu Rev Genet 41:147–168

    PubMed  CAS  Google Scholar 

  • Ristic Z, Cass DD (1992) Chloroplast structure after water and high-temperature stress in two lines of maize that differ in endogenous levels of abscisic acid. Int J Plant Sci 153:186–196

    Google Scholar 

  • Rizhsky L, Liang H, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130:1143–1151

    PubMed  CAS  Google Scholar 

  • Rogers GS, Milham PJ, Gillings M et al (1996) Sink strength may be the key to growth and nitrogen responses in N-deficient wheat at elevated CO2. Aust J Plant Physiol 23:253–264

    CAS  Google Scholar 

  • Sage RF (2004) The evolution of c4 photosynthesis. New Phytol 161:341–370

    CAS  Google Scholar 

  • Saini HS (1997) Effect of water stress on male gametophyte development in plants. Sex Plant Reprod 10:67–73

    Google Scholar 

  • Saini HS, Sedgley M, Aspinall D (1983) Effect of heat stress during floral development on pollen tube growth and ovary anatomy in wheat (Triticum aestivum L.). Aust J Plant Physiol 10:137–144

    Google Scholar 

  • Sairam RK, Saxena DC (2000) Oxidative stress and antioxidants in wheat genotypes: possible mechanism of water stress tolerance. J Agron Crop Sci 184:55–61

    CAS  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiological and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–420

    CAS  Google Scholar 

  • Sairam RK, Srivastava GC, Saxena DC (2000) Increased antioxidant activity under elevated temperatures: a mechanism of heat stress tolerance in wheat genotypes. Biol Plant 43:245–251

    CAS  Google Scholar 

  • Sakai H, Hasegawa T, Kobayashi K (2006) Enhancement of rice canopy carbon gain by elevated CO2 is sensitive to growth stage and leaf nitrogen concentration. New Phytol 170:321–332

    PubMed  CAS  Google Scholar 

  • Salekdeh GH, Siopongco J, Wade LJ et al (2002) Proteomic analysis of rice leaves during drought stress and recovery. Proteomics 2:1131–1145

    PubMed  CAS  Google Scholar 

  • Satake T, Yoshida S (1978) High temperature induced sterility in indica rices at flowering. Jpn J Crop Sci 47:6–17

    Google Scholar 

  • Scafaro AP, Haynes PA, Atwell BJ (2010) Physiological and molecular changes in Oryza meridionalis Ng., a heat-tolerant species of wild rice. J Exp Bot 61:191–202

    PubMed  CAS  Google Scholar 

  • Scandalios JG (1990) Responses of plant antioxidant defense genes to environmental stresses. Adv Genet 28:1–41

    PubMed  CAS  Google Scholar 

  • Schoffl F, Prandl R, Reindl A (1999) Molecular responses to heat stress. In: Shinozaki K, Yamaguchi-Shinozaki K (eds) Molecular responses to cold, drought, heat and salt stress in higher plants. R.G. Landes Co., Austin, Texas, pp 81–98

    Google Scholar 

  • Schwarte S, Bauwe H (2007) Identification of the photorespiratory 2-phosphoglycolate phosphatase, PGLP1, in Arabidopsis. Plant Physiol 144:1580–1586

    PubMed  CAS  Google Scholar 

  • Sharkey TD (2005) Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, Rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant Cell Environ 28:269–277

    CAS  Google Scholar 

  • Sheriff DW (1979) Stomatal aperture and the sensing of the environment by guard cells. Plant Cell Environ 2:15–22

    Google Scholar 

  • Siddique KHM, Loss SP, Regan KL et al (1999) Adaptation and seed yield of cool season grain legumes in Mediterranean environments of south western Australia. Aust J Agric Res 50:375–385

    Google Scholar 

  • Sinclair TR, Jamieson PD (2006) Grain number, wheat yield, and bottling beer: an analysis. Field Crops Res 98:60–67

    Google Scholar 

  • Slatyer RO (1977) Altitudinal variations in photosynthetic characteristics of snow gum. Eucalyptus paucifolia Sieb. Ex Spreng III. Temperature response of material grown in contrasting thermal environments. Aust J Plant Physiol 4:301–312

    CAS  Google Scholar 

  • Slatyur RO, Ferrar PJ (1977a) Altitudinal variations in the Photosynthetic characteristics of snow gum, Eucalyptus pauciflora Sieb.ex. Spreng.II. Effect of growth temperature under controlled conditions. Aust J Plant Physiol 4:289–299

    Google Scholar 

  • Slatyur RO, Ferrar PJ (1977b) Altitudinal variations in the Photosynthetic characteristics of snow gum, Eucalyptus pauciflora Sieb.ex. Spreng.V. Rate of acclimation to an altered growth environment. Aust J Plant Physiol 4:595–609

    Google Scholar 

  • Snape J, Fish L, Leader D et al (2005) The impact of genomics and genetics on wheat quality improvement. Turk J Agric For 29:97–103

    CAS  Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) IPCC, Climate change (2007): the physical science basis. Contribution of Working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge/New York: Cambridge University Press

    Google Scholar 

  • Somerville CR, Ogren WL (1980) Inhibition of photosynthesis in mutants of Arabidopsis lacking glutamate synthase activity. Nature 286:257–259

    CAS  Google Scholar 

  • Sreenivasulu N, Sopory SK, Kavi Kishor PB (2007) Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene 388:1–13

    PubMed  CAS  Google Scholar 

  • Subrahmanyam D, Subash N, Haris A et al (2006) Influence of water stress on leaf photosynthetic characteristics in wheat cultivars differing in their susceptibility to drought. Photosynthetica 44:125–129

    CAS  Google Scholar 

  • Subrahmanyam D, Rao PR, Voleti SR (2011) Climate change and its impact on rice. In: Madanpal (ed) Climate change and Crop productivity; impact and Crop adaptations, Today and Tomorrow Publishers, New Delhi

    Google Scholar 

  • Sun A, Yi S, Yang J, Zhao C, Liu J (2006) Identification and characterization of a heat-inducible ftsH gene from tomato (Lycopersicon esculentum Mill.). Plant Sci 170:551–562

    Google Scholar 

  • Tahir ISA, Nakata N (2005) Remobilization of nitrogen and carbohydrate from stems of bread wheat in response to heat stress during grain filling. J Agron Crop Sci 191:106–115

    Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Tao F, Hayashi Y, Zhang Z (2008) Global warming, rice production, and water use in China: developing a probabilistic assessment. Agric For Meteor 148:94–110

    Google Scholar 

  • Tester M, Bacic M (2005) Abiotic stress tolerance in grasses. From model plants to crop plants. Plant Physiol 137:791–793

    PubMed  CAS  Google Scholar 

  • Torres-Schumann S, Godoy JA, Pintor-Toro JA (1992) A probable lipid transfer protein gene is induced by NaCl in stems of tomato plants. Plant Mol Biol 18:749–757

    PubMed  CAS  Google Scholar 

  • Tregunna EB, Downton WJS (1967) Carbon dioxide compensation in members of the Amaranthaceae and some related families. Can J Bot 45:2385–2387

    Google Scholar 

  • Triboï E, Triboï-Blondel AM (2002) Productivity and grain or seed composition: a new approach toan old problem – invited paper. Eur J Agron 16:163–186

    Google Scholar 

  • Triboï E, Martre P, Triboï-Blondel AM (2003) Environmentally-induced changes of protein composition for developing grains of wheat are related to changes in total protein content. J Exp Bot 54:1731–1742

    PubMed  Google Scholar 

  • Urao T, Yakubov B, Satoh R (1999) A transmembrane hybrid type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11:1743–1754

    PubMed  CAS  Google Scholar 

  • Urao T, Yamaguchi-Shinozaki K, Shinozaki K (2001) Plant histidine kinases: an emerging picture of two-component signal transduction in hormone and environmental responses. Science’s Signal Transduction Knowledge Environment, RE18. URL http://stke.sciencemag.org/cgi/content/full/OC igtrans; 2001/109/re18

  • van Herwaarden AF, Angus JF, Richards RA et al (1998) ‘Haying-off’, the negative grain yield response of dryland wheat to nitrogen fertiliser. II. Carbohydrate and protein dynamics. Aust J Agric Res 49:1083–1093

    Google Scholar 

  • Varshney RK, Hoisington DA, Tyagi AK (2006) Advances in cereal genomics and applications in crop breeding. Trends Biotechnol 24:490–499

    PubMed  CAS  Google Scholar 

  • Verdoy D, Lucas MM, Manrique E et al (2004) Differential organ-specific response to salt stress and water deficit in nodulated bean (Phaseolus vulgaris). Plant Cell Environ 27:757–767

    CAS  Google Scholar 

  • Vettakkorumakankav NN, Falk D, Saxena P et al (1999) A crucial role for gibberellins in stress protection of plants. Plant Cell Physiol 40:542–548

    CAS  Google Scholar 

  • Wahid A, Gelani S, Ashraf M et al (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Google Scholar 

  • Wang XS, Zhu J, Mansueto L et al (2005) Identification of candidate genes for drought stress tolerance in rice by the integration of a genetic (QTL) map with the rice genome physical map. J Zhejiang Univ Sci B 6:382–388

    PubMed  Google Scholar 

  • Wang X, Cai J, Jiang D (2011) Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat. J Plant Physiol 168:585–593

    PubMed  CAS  Google Scholar 

  • Weerakoon WMW, Maruyama A, Ohba K (2008) Impact of humidity on temperature-induced grain strerility in rice (Oryza sativa L.). J Agron Crop Sci 194:135–140

    Google Scholar 

  • Weis E, Berry JA (1988) Plants and high temperature stress. In: Long SP, Woodward FI (eds) Plants and temperature. Company of Biologists Ltd, Cambridge, pp 329–346

    Google Scholar 

  • Westgate ME, Thomson Grant GL (1989) Water deficits and reproduction in maize. Responses of the reproductive tissue to water deficits at anthesis and mid-grain fill. Plant Physiol 91:862–867

    PubMed  CAS  Google Scholar 

  • Westgate ME, Passioura JB, Munns R (1996) Water status and ABA content of floral organs in drought-stressed wheat. Aust J Plant Physiol 23:763–772.01

    CAS  Google Scholar 

  • Whiteman PC, Koller D (1967) Interactions of carbondioxide concentration, light intensity and temperature on plant resistance to water vapour and carbon dioxide diffusion. New Phytol 66:463–473

    CAS  Google Scholar 

  • Winkel T, Renno JF, Payne WA (1997) Effect of the timing of water deficit on growth, phenology and yield of pearl millet (Pennisetum glaucum (L.) R. Br.) grown in Sahelian conditions. J Exp Bot 48:1001–1009

    CAS  Google Scholar 

  • Woo KC, Flügge UI, Heldt HW (1987) A two-translocator model for the transport of 2-oxoglutarate and glutamate in chloroplasts during ammonia assimilation in the light. Plant Physiol 84:624–632

    PubMed  CAS  Google Scholar 

  • Wuenscher JE, Kozlowski TT (1971) Thr response of transpiration resistance to leaf temperature as a dessication resistance mechanism in tree seedlings. Physiol Plant 24:254–259

    Google Scholar 

  • Xu ZZ, Zhou GS (2006) Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis. Planta 224:1080–1090

    PubMed  CAS  Google Scholar 

  • Xu S, Li J, Zhang X et al (2006) Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultra structure of chloroplasts in two cool-season turf grass species under heat stress. Environ Exp Bot 56:274–285

    CAS  Google Scholar 

  • Xu H, Zhang J, Zeng J et al (2009) Inducible antisense suppression of glycolate oxidase reveals its strong regulation over photosynthesis in rice. J Exp Bot 60:1799–1809

    PubMed  CAS  Google Scholar 

  • Yadav RL, Dwivedi BS, Prasad K et al (2000) Yield trends, and changes in soil organic-C and available NPK in a long-term rice-wheat system under integrated use of manures and fertilizers. Field Crops Res 68:219–246

    Google Scholar 

  • Yamada M, Hidaka T, Fukamachi H (1996) Heat tolerance in leaves of tropical fruit crops as measured by chlorophyll fluorescence. Sci Hortic 67:39–48

    CAS  Google Scholar 

  • Yang J, Zhang JH (2006) Grain filling of cereals under soil drying. New Phytol 169:223–236

    PubMed  CAS  Google Scholar 

  • Yang J, Zhang J, Wang Z et al (2001a) Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiol 127:315–323

    PubMed  CAS  Google Scholar 

  • Yang J, Zhang J, Wang Z et al (2001b) Activities of starch hydrolytic enzymes and sucrose-phosphate synthase in the stems of rice subjected to water stress during grain filling. J Exp Bot 52:2169–2179

    PubMed  CAS  Google Scholar 

  • Yang J, Zhang J, Wang Z et al (2002) Abscisic acid and cytokinins in the root exudates and leaves and their relations with senescence and remobilization of carbon reserves in rice subjected to water stress during grain filling. Planta 215:645–652

    PubMed  CAS  Google Scholar 

  • Yang J, Zhang J, Wang Z et al (2003a) Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during grain filling. Plant Cell Environ 26:1621–1631

    CAS  Google Scholar 

  • Yang J, Zhang J, Wang Z et al (2003b) Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during grain filling. Field Crops Res 81:69–81

    Google Scholar 

  • Yang J, Zhang J, Wang Z et al (2004a) Activities of fructan- and sucrose-metabolizing enzymes in wheat stems subjected to water stress during grain filling. Planta 220:331–343

    PubMed  CAS  Google Scholar 

  • Yang J, Zhang JH, Wang ZQ et al (2004b) Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiol 135:1621–1629

    PubMed  CAS  Google Scholar 

  • Yang LX, Huang JY, Yang HJ et al (2006) Seasonal changes in the effects of free-air CO2 enrichment (FACE) on dry matter production and distribution of rice (Oryza sativa L.). Field Crops Res 98:12–19

    Google Scholar 

  • Yang JC, Liu K, Zhang SF et al (2008) Hormones in rice spikelets in responses to water stress during meiosis. Acta Agron Sin 34:111–118

    CAS  Google Scholar 

  • Yoshida S, Shioya M (1976) Photosynthesis of the rice plant under water stress. Soil Sci P1ant Nutr 22:169–180

    Google Scholar 

  • Yoshioka T, Suge H (1996) Damage of seed fertility by cooling treatment and endogenous gibberellins in ears of rice plants (Oryza sativa L.). Breed Sci 46:173–178

    CAS  Google Scholar 

  • Zelitch I, Schultes NP, Peterson RB et al (2009) High glycolate oxidase activity is required for survival of maize in normal air. Plant Physiol 149:195–204

    PubMed  CAS  Google Scholar 

  • Zhang JH, Huang WD, Liu YP et al (2005) Effect of temperature acclimation pretreatment on the ultrasructure of mesophyll cells in young grape plants (Vitis vinifera L.cv. Jingxiu) under cross temperature stresses. J Integr Plant Biol 47:959–970

    Google Scholar 

  • Zhang T, Yang L, Jang KF et al (2008) QTL mapping for teat tolerance of the tassel period of rice. Mol Plant Breed 6:867–873

    CAS  Google Scholar 

  • Zhang L, Li Y, Xing D et al (2009) Characterization of mitochondrial dynamics and subcellular localization of ROS reveal that HsfA2 alleviates oxidative damage caused by heat stress in Arabidopsis. J Exp Bot 60:2073–2091

    PubMed  CAS  Google Scholar 

  • Zhao ZG, Jiang L, Xiao YH et al (2006) Identification of QTLs for heat tolerance at the booting stage in rice (Oryza sativa L.). Acta Agron Sin 32:640–644

    CAS  Google Scholar 

  • Zhou J, Wang X, Jiao Y et al (2007) Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Mol Biol 63:591–608

    PubMed  CAS  Google Scholar 

  • Zhu C, Xiao Y, Wang C et al (2005a) Mapping QTL for hear tolerance at grain filling stage in rice. Rice Sci 12:33–38

    Google Scholar 

  • Zhu X, Gong H, Chen G et al (2005b) Different solute levels in two spring wheat cultivars induced by progressive field water stress at different developmental stages. J Arid Environ 62:1–14

    Google Scholar 

  • Zhu Q, Zheng X, Luo J et al (2007) Multilocus analysis of nucleotide variation of Oryza sativa and Its wild relatives: severe bottleneck during domestication of rice. Mol Biol Evol 24:875–888

    PubMed  CAS  Google Scholar 

  • Zinselmeier C, Lauer MJ, Boyer JS (1995) Reversing drought induced losses in grain-yield; sucrose maintains embryo growth in maize. Crop Sci 35:1390–1400

    Google Scholar 

  • Ziska LH, Manalo PA, Ordonez RA (1996) Intraspecific variation in the response of rice (Oryza sativa L.) to increased CO2 and temperature: growth and yield response of 17 cultivars. J Exp Bot 47:1353–1359

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sitapathi Rao Voleti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kondamudi, R. et al. (2012). Heat Stress in Rice – Physiological Mechanisms and Adaptation Strategies. In: Venkateswarlu, B., Shanker, A., Shanker, C., Maheswari, M. (eds) Crop Stress and its Management: Perspectives and Strategies. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2220-0_6

Download citation

Publish with us

Policies and ethics