Resource Assessment Techniques for Continuous Cover Forestry

Chapter
Part of the Managing Forest Ecosystems book series (MAFE, volume 23)

Abstract

From a statistical point of view continuous cover forestry (CCF) systems are heterogeneous populations, whose attributes show high variability and diversity. While information needs for homogeneous, even-aged, single species stands can easily be satisfied by providing information on statistical key parameters, CCF systems render information on spatial patterns and forest structures necessary. Beside statistical point estimates information on the distribution of attributes is crucial for managing CCF systems and describing their ecological condition. This paper summarizes selected methodologies that recently have promoted the assessment of CCF systems. Special emphasis is given to information needs, terrestrial surveys, remote sensing techniques, mapped information and change estimation.

Keywords

Forest Inventory Sustainable Forest Management National Forest Inventory Hyperspectral Data Terrestrial Laser Scanning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgemnents

We want to express our thanks to Dr. André Iost, Dr. Bernhard Kenter, Konstantin Olschofsky, and Daniel Plugge, all Institute for World Forestry, Hamburg, Dr. Charles T. Scott, USDA Forest Service, Northeastern Research Station, Newtown Square, PA, USA, and to Prof. Dr. Steffen Kuntz, Infoterra GmbH, Friedrichshafen, Germany, for helpful input and comments.

References

  1. Bachmann P, Köhl M, Päivinen R (eds) (1998) Assessment of biodiversity for improved forest planning. Kluwer Academic Publishers, Dordrecht, 421 pGoogle Scholar
  2. Baffetta F, Fattorini L, Franceschi S, Corona P (2009) Design-based approach to k-nearest neighbours technique for coupling field and remotely sensed data in forest surveys. Remote Sens Environ 113:463–475CrossRefGoogle Scholar
  3. Baldauf T, Köhl M (2009). Use of TerraSAR-X for forest degradation mapping in the context of REDD. Presentation at the World Forestry Congress, Buenos AiresGoogle Scholar
  4. Bickford CA (1959) A test of continuous inventory for national forest management based upon aerial photographs, double sampling and remeasured plots. Proc Soc Am Foresters 1959: 143–148Google Scholar
  5. Biolley HE (1921) L`aménagement des forêts par la méthode expérimentale et spécialment la méthode du contrôle, Paris, Neuchatel, 90 pGoogle Scholar
  6. Bodmer HC (1988) Forest stands mapping by means of satellite imagery in the Swiss Middle Lands. In: Proceedings of the IUFRO Subject Group 4.02.05, Finland, pp 53–61Google Scholar
  7. Bowden DC, Dixon GE, Frayer WE, Graybill FA, Jeyaratnam S, Johnston DC, Kent BM, LaBau VJ, Roberts E (1979) Multi-level sampling designs for resource inventories. Department of Forest and Wood Sciences, Colorado State University, Rocky Mountain Forest and Range Exp. Station, USDA Forest Service, Ft. Collins, 113 pGoogle Scholar
  8. Canavan SJ, Hann DW (2004) The two-stage method for measurement error characterization. For Sci 50:743–756Google Scholar
  9. Canty MJ (2010) Image analysis, classification and change detection in remote sensing: with algorithms for ENVI/IDL, 2nd edn. Taylor & Francis, Boca Raton, pp 319–331Google Scholar
  10. Carleer A, Wolff E (2004) Exploitation of very high resolution satellite data for tree species identification. Photogramm Eng Remote Sens 70(1):135–140Google Scholar
  11. Clark I (1979) Practical geostatistics. Applied Sciences Publishers, LondonGoogle Scholar
  12. Corona P (2010) Intergration of forest mapping and inventory to support forest management. iForest 3:59–64CrossRefGoogle Scholar
  13. Crow TR, Haney A, Walter DM (1994) Report on the scientific roundtable on biological diversity convened by the Chequamegon and Nicolet National Forests. General Technical Report NC-116, USDA Forest Service, St. PaulGoogle Scholar
  14. Das JK, Nautiyal J (2004) Forest variability index: a vector quantifying forest stand diversity and forest compactness. Forest Policy Econ 6:271–288CrossRefGoogle Scholar
  15. Finleya AO, McRoberts RE (2008) Efficient k-nearest neighbor searches for multi-source forest attribute mapping. Remote Sens Environ 112(5):2203–2211CrossRefGoogle Scholar
  16. Franc A (1998) Some mathematical remarks on forest biodiversity. In: Bachmann P, Köhl M, Päivinen R (eds) Assessment of biodiversity for improved forest planning. Kluwer Academic Publishers, Dordrecht, pp 159–169Google Scholar
  17. Franco-Lopez H, Ek AR, Bauer ME (2001) Estimation and mapping of forest stand density, volume, and cover type using the k-nearest neighbors method. Remote Sens Environ 77: 251–274CrossRefGoogle Scholar
  18. Fuller RM, Smith GM, Devereux BJ (2003) The characterisation and measurement of land cover change through remote sensing. Problems n operational applications? Int J Appl Earth Observ Geoinform 4:243–253CrossRefGoogle Scholar
  19. Gadow K von (1995) Forest planning in Europe – with particular reference to Central Europe. In: Hyttinen P, Kähkönen A, Pelli P (eds) Multiple use and environmental values in forest planning, EFI proceedings No. 4, pp 5–18Google Scholar
  20. Gal L, Bella IE (1995) Error assessment for a provincial timber inventory. For Chron 71:627–632Google Scholar
  21. García M, Riaño D, Chuvieco E, Danson FM (2010) Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data. Remote Sens Environ 114(4):816–830CrossRefGoogle Scholar
  22. Gaulton R, Malthus TJ (2010) LiDAR mapping of canopy gaps in continuous cover forests: a comparison of canopy height model and point cloud based techniques. Int J Remote Sens 31:1193–1211CrossRefGoogle Scholar
  23. Gertner GZ, Köhl M (1992) An assessment of some nonsampling errors in a national survey using an error budget. For Sci 38(3):525–538Google Scholar
  24. Gleichmar W, Gerold D (1998) Indizes zur Charakterisierung der horizontalen Baumverteilung. Forstwiss Centralbl 117:69–80CrossRefGoogle Scholar
  25. GOFC-GOLD (2010) Monitoring forest carbon stocks and fluxes in the Congo Basin, Report Nr. 44, BrazzavilleGoogle Scholar
  26. Goodman LA (1964) Simultaneous confidence intervalls for contrasts among multinomial proportions. Ann Math Stat 35:716–725CrossRefGoogle Scholar
  27. Goodman LA (1965) On simultaneous confidence intervalls for multinomial proportions. Technometrics 7(2):247–254CrossRefGoogle Scholar
  28. Gray A (2003) Monitoring stand structure in mature coastal Douglas-fir forests: effect of plot size. For Ecol Manag 175:1–16CrossRefGoogle Scholar
  29. Gurnaud A (1878) Cahier l`aménagement pour l`application de la méthode par contenance exposée sur la forêt des Eperous, Paris, 160 pGoogle Scholar
  30. Hahn JT, Hansen MH (1983) Estimation of sampling error associated with timber change projection simulators. In: Bell JF, Atterbury T (eds) Renewable resource inventories for monitoring changes and trend, proceedings, 15–19 August 1983, Corvallis, SAF 83-14, pp 546–549Google Scholar
  31. Häussler T, Köhl M, Lautner M, Scheuber M, Stümer W, Ziese H (1999) Hyperspektraldaten zur Erfassung von Zustand und Entwicklung von Waldökosystemen. In: Dornier Satellitensysteme, ProSmart Endbericht, Friedrichshafen, pp 9-1–9-119Google Scholar
  32. Holmgren P, Thuresson T (1998) Satellite remote sensing for forestry planning – a review. Scand J For Res 13:S. 90–110CrossRefGoogle Scholar
  33. Hopkinson C, Chasmer L, Young-Pow C, Treitz P (2004) Assessing forest metrics with a ground-based scanning LiDAR. Can J Remote Sens 34:573–583Google Scholar
  34. Huang P, Pretzsch H (2010) Using terrestrial laser scanner for estimating leaf areas of individual trees in a conifer forest. Trees 24:609–619CrossRefGoogle Scholar
  35. Hui GY, Zhao XH, Zhao ZH, von Gadow K (2011) Evaluating tree species spatial diversity based on neighborhood relationships. Forest Sci 57(4):292–300 (http://www.ingentaconnect.com/content/saf/fs/2011/00000057/00000004/art00003)Google Scholar
  36. Hyde P, Nelson R, Kimes D, Levine E (2007) Exploring LiDAR-RaDAR synergy–predicting aboveground biomass in a southwestern ponderosa pine forest using LiDAR, SAR and InSAR. Remote Sens Environ 106(1):28–38CrossRefGoogle Scholar
  37. Hyyppa J, Hyyppa H, Inkinen M, Engdahl M, Linko S, Zhu Y-H (2000) Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes. For Ecol Manag 128:109–120CrossRefGoogle Scholar
  38. Intergovernmental Panel on Climate Change (IPCC) (2003) Good practice guidance for land use, land-use change and forestry. http://www.ipcc.ch/. Accessed 1 Oct 2006
  39. Intergovernmental Panel on Climate Change (IPCC) (2006) Guidelines for National Greenhouse Gas Inventories. IPCC National Greenhouse Gas Inventories Programme. Edited by Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K. Japan: Institute for Global Environmental Strategies (IGES)Google Scholar
  40. Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic Press, London, 600 pGoogle Scholar
  41. Kangas A (1998) Effect of errors-in-variables on coefficients of a growth model and on prediction of growth. For Ecol Manag 102:203–212CrossRefGoogle Scholar
  42. Kasischke ES, Bourgeau-Chavez LL, Christensen NL, Haney E (1994) Observations on the sensitivity of ERS-1 SAR image intensity to changes in aboveground biomass in young loblolly pine forests. Int J Remote Sens 15:3–16CrossRefGoogle Scholar
  43. Kellenberger T (1996) Erfassung der Waldfläche in der Schweiz mit multispektralen Satellitenbilddaten, Remote Sensing Series, 28, Univ. Zürich, Geographisches Insitut, 284 SGoogle Scholar
  44. Kilkki P, Päivinen R (1987) Reference sample plots to combine field measurements and satellite data in forest inventories. University of Helsinki, Department of Forest Mensuration and Management. Res Notes 19: 209–215Google Scholar
  45. Kim H, Tomppo E (2006) Model-based prediction error uncertainty estimation for k-nn method. Remote Sens Environ 104:257–263CrossRefGoogle Scholar
  46. Koch B (2010) Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment. ISPRS J Photogramm Remote Sens 65: 581–590CrossRefGoogle Scholar
  47. Köhl M, Jensen R (1993) Analysing forest damage inventory data by self-organizing maps. In: Rennolls K, Gertner G (eds) Proceedings of the IUFRO S.4.11 Conference “The Optimal Design of Forest Experiments and Forest Surveys”, London, 10–13 Sept 1991, pp 177–190Google Scholar
  48. Köhl M, Zingg A (1996) Eignung von Diversitätsindizes bei Langzeituntersuchungen zur Biodiversität in Waldbeständen. Allg Forst J-Zeitung 167(4):76–85Google Scholar
  49. Köhl M, Thiele D, Zingg A (2000) GIS-based geo-statistical analysis of long term experiments in forest research. In: Heuvelink GBM, Lemmens MJPM (eds) Spatial accuracy assessment, Proceedings of the 4th international symposium on spatial accuracy assessment in natural resources and environmental sciences, Amsterdam, July 2000, pp 373–380Google Scholar
  50. Köhl M, Lautner M (2001) Erfassung von Waldökosystemen durch Hyperspektraldaten, Photogrammetrie – Fernerkundung – Geoinformation, Heft 2, pp 107–117Google Scholar
  51. Köhl M, Magnussen S, Marchetti M (2006) Sampling methods, remote sensing and GIS multiresource forest inventory. Springer Verlag, Heidelberg, 403 pCrossRefGoogle Scholar
  52. Kohonen T (1982) Self-organiszing formation of topology correct featue maps. Biol Cybern 43: 59–69CrossRefGoogle Scholar
  53. Kohonen T (2001) Self-organizing maps. Springer series in information sciences, vol 30. Springer, BerlinGoogle Scholar
  54. Korpela I, Ørka HO, Maltamo M, Tokola T, Hyyppä J (2010) Tree species classification using airborne LiDAR. Effects of stand and tree parameters, downsizing of training set, intensity normalization, and sensor type, The Finnish Society of Forest Science, Helsinki. Silva Fennica 44:2Google Scholar
  55. Král K, Janík D, Vrška D, Adam L, Hort P, Unar PŠ (2010) Local variability od stand strucutural features in beech dominated natural forests of central europe: implications for sampling. Forest Ecol Manag 260:2196–2203CrossRefGoogle Scholar
  56. Leckie DG, Gougeon FA, Tinis S, Nelson T, Burnett CN, Paradine D (2004) Automated tree recognition in old growth conifer stands with high resolution digital imagery. Canadian Forest Service, Pacific Forestry Centre, Natural Resources Canada, VictoriaGoogle Scholar
  57. Lefsky MA, Harding DJ, Keller M, Cohen WB, Carabajal CC, Claudia C, Del Bom Espirito-Santo F et al (2005) Estimates of forest canopy height and aboveground biomass using ICESat. Geophys Res Lett 32. Online avail.: http://dx.doi.org/10.1029/2005GL023971
  58. Lessler JT, Kalsbeek WD (1992) Nonsampling errors in surveys. Wiley, New York, 412 pGoogle Scholar
  59. Loudermilk EL, Singhania A, Fernandez JC, Hiers JK, O’Brien JJ, Cropper WP Jr, Slatton KC, Mitchell RJ (2007) Application of ground-based LIDAR for fine-scale forest fuel modeling, USDA Forest Service Proceedings RMRS-P-46CD, pp 515–523Google Scholar
  60. Lucas RM, Lee AC, Bunting PJ (2008) Retrieving forest biomass through integration of CASI and LiDAR data. Int J Remote Sens 29(5):1553–1577CrossRefGoogle Scholar
  61. Luckman A, Baker J, Honza M, Lucas R (1998) Tropical forest biomass density estimation using JERS-1 SAR: seasonal variation, confidence limits, and application to image mosaics. Remote Sens Environ 63:126–139CrossRefGoogle Scholar
  62. Lund HG, Smith WB (1997) The United States forest inventory program. In: Nyyssonen A, Ahti A (eds) Proceedings, FAO/ECE meeting of experts on Global Forest Resource Assessment, Kotka, l0–14 June 1996. Research Papers 620. Helsinki, Finland: Finnish Forest Research Inst, pp 331–333Google Scholar
  63. Maas H-G, Bienert A, Scheller S, Keane E (2008) Automatic forest inventory parameter determination from terrestrial laser scanner data. Int J Remote Sens 29:1579–1593CrossRefGoogle Scholar
  64. Magnussen S, Boyle TJB (1995) Estimating sample size for inference about Shannon ± Weaver and the Simpson indices of species diversity. For Ecol Manag 78:71–84CrossRefGoogle Scholar
  65. Magnussen S, Eggermont P, LaRiccia VN (1999) Recovering tree heights from airborne laser scanner data. For Sci 45:407–422Google Scholar
  66. Magnussen S, McRoberts RE, Tomppo E (2009) Model-based mean square error estimators for k-nearest neighbour predictions and applications using remotely sensed data for forest inventories. Remote Sens Environ 113:476–488CrossRefGoogle Scholar
  67. Magurran AE (1988) Ecological diversity and its measurement. Croom Helm Ltd, London, 179 pGoogle Scholar
  68. Mandallaz D (1993) Geostatistical methods for double sampling schemes: application to combined forest inventory, Technical Report, Chair of Forest Inventory and Planning, ETH, Zürich, 256 pGoogle Scholar
  69. Mandallaz D (2000) Estimation of the spatial covariance in universal kriging: application to forest inventory. Environ Ecol Stat 7:263–284CrossRefGoogle Scholar
  70. MCPFE (1993) Resolution H1 general guidelines for the sustainable management of forests in Europe, Second Ministerial Conference on the Protection of Forests in Europe, 16–17 June 1993, Helsinki, Finland. online available: http://www.foresteurope.org/filestore/foresteurope/ Conferences/Helsinki/helsinki_resolution_h1.pdf
  71. MCPFE (2007) State of Europe’s forests 2007: the MCPFE report on sustainable forest management in Europe, MCPFE Liaison Unit Warsaw, 247 pGoogle Scholar
  72. McRoberts RE, Hahn JT, Hefty GJ, Van Cleve JR (1994) Variation in forest inventory field measurements. Can J For Res 24:1766–1770CrossRefGoogle Scholar
  73. Mehtätalo L, Nyblom J (2009) Estimating forest attributes using observations of canopy height: a model-based approach. For Sci 55:411–422(12)Google Scholar
  74. Miller RG (1981) Simultaneous statistical inference. Springer, Heidelberg, 299 SGoogle Scholar
  75. Morsdorf F, Nichol C, Malthus T, Woodhouse IH (2009) Assessing forest structural and physiological information content of multi-spectral LiDAR waveforms by radiative transfer modelling. Remote Sens Environ 113(10):S. 2152–2163, Online avail. http://www.sciencedirect.com/science/article/B6V6V-4WP4BJ3-1/2/5590e399d7610f3f2c213d137310378f CrossRefGoogle Scholar
  76. Murphy GE, Acuna AM, Dumbrell I (2010) Tree value and log product yield determination in Radiata pine (Pinus radiata) plantations in Australia: comparisons of terrestrial laser scanning with a forest inventory system and manual measurements. Can J For Res 40:2223–2233CrossRefGoogle Scholar
  77. Neumann M, Starlinger F (2001) The significance of different indices for stand strucutre and diversity forests. For Ecol Manag 145:91–106CrossRefGoogle Scholar
  78. Nielsen AA, Conradsen K, Simpson JJ (1998) Multivariate alteration detection (MAD) and MAF postprocessing in multispectralm biotemporal image data: New approaches to change detection studies. Remote Sens Environ 64:1–19CrossRefGoogle Scholar
  79. Nilsson M (1997) Estimation of forest variables using satellite image data and airborne lidar. Doctoral thesis, Swedish University of Agricultural Sciences, UmeaGoogle Scholar
  80. Nori W, Elsiddig EN, Niemeyer I (2008) Detection of land cover changes using multi-temporal satellite imagery. ISPRS Congress Beijing 2008. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXVII, p 947–952Google Scholar
  81. Parker GG, Harding DJ, Berger M (2004) A portable LIDAR system for rapid determination of forest canopy strucutre. J Appl Ecol 41:755–767CrossRefGoogle Scholar
  82. Persson A, Holmgren J, Söderman U (2002) Detecting and measuring individual trees using an airborne laser scanner. Photogramm Eng Remote Sens 68:925–932Google Scholar
  83. Pielou EC (1975) Ecological diversity. Wiley, New YorkGoogle Scholar
  84. Quesenberry CP, Hurst DC (1964) Large sample simultaneous confidence intervals for multinomial proportions. Technometrics 6(2):191–195CrossRefGoogle Scholar
  85. Richards JA, Jia X (1999) Remote sensing digital image analysis. Springer, Heidelberg, 363 pGoogle Scholar
  86. Roesch F (1993) Adaptive cluster sampling for forest inventories. For Sci 39:655–669Google Scholar
  87. Schmid P (1967) Die Weiterentwicklung der Leistungskontrolle in der Schweiz. Wiss Z Tech Univ Dresden 16(2):545–549Google Scholar
  88. Schmid-Haas P, Keller W, Gadola C (1984) Integrale Planung im Forstbetrieb, Eidgenössische Anstalt für das Forstliche Versuchswesen, Bericht 266, 116 pGoogle Scholar
  89. St-Onge B, Hu Y, Vega C (2008) Mapping the height and above-ground biomass of a mixed forest using lidar and stereo Ikonos images. Int J Remote Sens 29(5):1277–1294CrossRefGoogle Scholar
  90. Stümer W, Köhl M (2005) Kombination von terrestrischen Aufnahmen und Fernerkundungsdaten mit Hilfe der k-nächsten-Nachbarn-Methode zur Klassifizierung und Kartierung von Wäldern. Photogrammetrie Fernerkundung Geoinformation 1/2005, S. 23–36Google Scholar
  91. Stümer W, Kenter B, Köhl M (2010) Spatial interpolation of in-situ data by self-organizing Map algorithms (neural networks) for the assessment of carbon stocks in european forests. For Ecol Manag 260:287–293. doi: 10.1016/j.foreco.2010.4.008 CrossRefGoogle Scholar
  92. Thies M, Pfeifer N, Winterhalder D, Gorte BGH (2004) Three-dimensional reconstruction of stems for assessment of taper, sweep, and lean based on laser scanning of standing trees. Scand J Forest Res 19:571–581CrossRefGoogle Scholar
  93. Thompson SK (1990) Adaptive cluster sampling. JASA 85:1050–1059Google Scholar
  94. Tomppo E (1991) Satellite image-based national forest inventory of Finland. Int Archiv Photogram Remote Sens 28(7–1):419–424Google Scholar
  95. Tomppo E, Goulding C, Katila M (1999) Adapting Finnish multi-source forest inventory techniques to the New Zealand preharvest inventory. Scand J For Res 14:182–192CrossRefGoogle Scholar
  96. Tomppo E, Halme M (2004) Using coarse scale forest variables as ancillary information and weighting of variables in k-NN estimation: a genetic algorithm approach. Remote Sens Environ 92:1–20CrossRefGoogle Scholar
  97. UN (2008) Non-legally binding instrument on all types of forests, Resolution adopted by the General Assembly, New York. http://daccess-dds-ny.un.org/doc/UNDOC/GEN/N07/ 469/65/PDF/N0746965.pdf?OpenElement
  98. UN-ECE/FAO (2000) Temperate and boreal forest resources assessment (TBFRA) 2000. UN, New YorkGoogle Scholar
  99. van Leeuwen M, Hilker T, Coops NC, Frazer G, Wulder MA, Newnham GJ, Culvenor DS (2011) Assessment of standing wood and fiber quality using ground and airborne laser scanning: a review. For Ecol Manag 261:1467–1478CrossRefGoogle Scholar
  100. Vauhkonen J (2010) Estimating crown base height for Scots pine by means of the 3D geometry of airborne laser scanning data. Int J Remote Sens 31:1213–1226CrossRefGoogle Scholar
  101. von Gadow K, Hui GY, Albert M (1998) Das Winkelmaß – ein Strukturparameter zur Beschreibung der Individualverteilung in Waldbeständen. Cbl Ges Forstw 115 Jg:1–10Google Scholar
  102. von Gadow K, Kurttila M, Leskinen P, Leskinen L, Nuutinen T, Pukkala T (2007) Designing forested landscapes to provide multiple services. CAB reviews: perspectives in agriculture, Veterinary Science, Nutrition and Natural Resources 2007 2, No. 038, pp 1–15Google Scholar
  103. Ware KD, Cunia T (1962) Continuous forest inventory with partial replacement of samples. For Sci 8(3):1–40 (http://www.ingentaconnect.com/content/saf/fs/1962/00000008/A00303s3/art00001)
  104. Westfall JA, Patterson PL (2007) Measurement variability error for estimates of volume change. Can J For Res 37:2201–2210CrossRefGoogle Scholar
  105. Westfall JA, Woodall CW (2007) Measurement repeatability of a large-scale inventory of forest fuels. For Ecol Manag 253:171–176CrossRefGoogle Scholar
  106. WSL (1999) Schweizerisches Landesforstinventar, Ergebnisse der Zweitaufnahme 1993–1995. Haupt Verlag, Bern/Stuttgart/Wien, 442 pGoogle Scholar
  107. Zhao K, Popescu S, Nelson R (2009) Lidar remote sensing of forest biomass: a scale-invariant estimation approach using airborne lasers. Remote Sens Environ 113(1):182–196CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Institute for World ForestryUniversity of HamburgHamburgGermany
  2. 2.Institute for World Forestry, von Thünen-InstituteHamburgGermany

Personalised recommendations