Advertisement

Continuous Cover Forestry in Finland – Recent Research Results

  • Timo Pukkala
  • Erkki Lähde
  • Olavi Laiho
Chapter
Part of the Managing Forest Ecosystems book series (MAFE, volume 23)

Abstract

The current official silvicultural instructions of Finland recommend even-aged rotation forest management (RFM) combined with low thinning and artificial regeneration. However, the direction is gradually changing towards increasing freedom and flexibility in forest management. The first sign of a new silvicultural era was the gradual approval of high thinning, which is now accepted although it was strictly forbidden in the past. As a further step, uneven-aged management and other forms of continuous cover forestry (CCF) are now gaining popularity and acceptance. The harmful impacts of clear felling and plantation forestry on the recreational value and biodiversity of forests have been increasingly emphasized. In addition, encouraging results on the yield and profitability of CCF have been obtained recently. This chapter reviews those results. The review shows that CCF is often more profitable than even-aged management. The superiority of CCF increases if non-wood benefits are included in the analysis. The growth rates of most Finnish forests are too low to warrant the high stand establishment and management costs of even-aged plantation forestry. If the forest landowner wants to practice forestry that is profitable (without state subsidies) also with high discounting rates, on poor growing sites and in the northern parts of Finland, her only option is continuous cover management.

Keywords

Diameter Class Stand Basal Area Shelter Tree Extraction Road Finnish Forest 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Andreassen K, Øyen B-H (2001) Economic consequences of three silvicultural methods in uneven-aged mature coastal spruce forests of central Norway. Forestry 75:483–488CrossRefGoogle Scholar
  2. Chang SJ (1981) Determination of the optimal growing stock and cutting cycle for an uneven-aged stand. Forest Sci 27(4):739–744Google Scholar
  3. Chang SJ, Gadow Kv (2010) Application of the generalized Faustmann model to uneven-aged forest management. J Forest Econ 16(2010):313–325CrossRefGoogle Scholar
  4. Díaz-Balteiro L, Romero C (2003) Forest management optimisation models when carbon captured is considered: a goal programming approach. Forest Ecol Manage 174:447–457CrossRefGoogle Scholar
  5. Eerikäinen K, Miina J, Valkonen S (2007) Models for the regeneration establishment and the development of established seedlings in uneven-aged, Norway spruce dominated stands of southern Finland. Forest Ecol Manage 242:444–461CrossRefGoogle Scholar
  6. Haight RG (1985) A comparison of dynamic and static economic models of uneven-aged stand management. Forest Sci 31(4):957–974Google Scholar
  7. Haight RG, Monserud RA (1990a) Optimizing any-aged management of mixed-species stands: I. Performance of a coordinate search process. Can J Forest Res 20:15–25CrossRefGoogle Scholar
  8. Haight RG, Monserud RA (1990b) Optimizing any-aged management of mixed-species stands: II. Effect of decision criteria. Forest Sci 36(1):125–144Google Scholar
  9. Haight RG, Brodie JD, Adams DM (1985) Optimizing the sequence of diameter distributions and selection harvests for uneven-aged stand management. Forest Sci 31(2):451–462Google Scholar
  10. Hyvönen R, Olsson BA, Lundqvist H, Staaf H (2000) Decomposition and nutrient release from Picea abies (L.) Karst. and Pinus sylvestris L. logging residues. Forest Ecol Manage 126: 97–112CrossRefGoogle Scholar
  11. Hyytiäinen K, Tahvonen O (2003) Maximum sustained yield, forest rent of Faustmann: does it really matter? Scand J Forest Res 18:457–469CrossRefGoogle Scholar
  12. Johansson P (2008) Consequences of disturbance on epiphytic lichens in boreal and near boreal forests. Biol Conserv 141:1933–1944CrossRefGoogle Scholar
  13. Karjalainen T, Kellomäki S, Pussinen A (1994) Role of wood-based products in absorbing atmospheric carbon. Silva Fennica 28(2):67–80Google Scholar
  14. Keto-Tokoi P, Kuuluvainen T (2010) Suomalainen aarniometsä. Maahenki, Kariston kirjapaino, Hämeenlinna, 302 ppGoogle Scholar
  15. Kolström T (1993) Modelling the development of an uneven-aged stand of Picea abies. Scand J Forest Res 8:373–383CrossRefGoogle Scholar
  16. Koskela E, Ollikainen M, Pukkala T (2007) Biodiversity conservation in commercial boreal forestry: optimal rotation age and volume of retention. Forest Sci 53(3):443–452Google Scholar
  17. Lähde E (1992a) Natural regeneration of all-sized spruce-dominated stands. In: Hagner M (ed) Silvicultural alternatives, Proceedings from an internordic workshop, June 22–25 1992. The Swedish University of Agricultural Sciences, Department of Silviculture, Reports 35, pp 111–116Google Scholar
  18. Lähde E (1992b) Natural regeneration of all-sized spruce-dominated stands treated by single tree selection. In: Hagner M (ed) Silvicultural alternatives, Proceedings from an internordic workshop, June 22–25 1992. The Swedish University of Agricultural Sciences, Department of Silviculture, Reports 35, pp 117–123Google Scholar
  19. Lähde E, Laiho O, Norokorpi Y, Saksa T (1991) The structure of advanced virgin forests in Finland. Scand J Forest Res 6:527–537CrossRefGoogle Scholar
  20. Lähde E, Laiho O, Norokorpi Y, Saksa T (1992a) Alternative silvicultural treatments as applied to advanced stands – research plan. In: Hagner M (ed) Silvicultural alternatives, Proceedings from an internordic workshop, June 22–25 1992. The Swedish University of Agricultural Sciences, Department of Silviculture, Reports 35, pp 66–73Google Scholar
  21. Lähde E, Laiho O, Norokorpi Y, Saksa T (1992b) Stand structure of thinning and mature conifer-dominated forests in boreal zone. In: Hagner M (ed) Silvicultural alternatives, Proceedings from an internordic workshop, June 22–25 1992. The Swedish University of Agricultural Sciences, Department of Silviculture, Reports 35, pp 58–65Google Scholar
  22. Lähde E, Laiho O, Norokorpi Y, Saksa T (1994a) Structure and yield of all-sized and even-sized conifer-dominated stands on fertile sites. Ann Sci Forestiéres 51(2):97–109CrossRefGoogle Scholar
  23. Lähde E, Laiho O, Norokorpi Y, Saksa T (1994b) Structure and yield of all-sized and even-sized Scots pine-dominated stands. Ann Sci Forestiéres 51(2):111–120CrossRefGoogle Scholar
  24. Lähde E, Laiho O, Norokorpi Y (1999a) Diversity-oriented silviculture in the Boreal Zone of Europe. Forest Ecol Manage 118:223–243CrossRefGoogle Scholar
  25. Lähde E, Laiho O, Norokorpi Y (1999b) Stand structure as the basis of diversity index. Forest Ecol Manage 115:213–220CrossRefGoogle Scholar
  26. Lähde E, Laiho, Norokorpi, Y (1999c) Ekometsänhoidon perusteet ja mallit. The Finnish Forest Research Institute. Research Notes 736: 1–61Google Scholar
  27. Lähde E, Laiho O, Norokorpi Y, Saksa T (2001) Structure transformation and volume increment in Norway spruce-dominated forests following contrasting silvicultural treatments. Forest Ecol Manage 151:133–138CrossRefGoogle Scholar
  28. Lähde E, Laiho O, Norokorpi Y, Saksa T (2002a) Development of Norway spruce dominated stands after single-tree selection and low thinning. Can J Forest Res 32:1577–1584CrossRefGoogle Scholar
  29. Lähde E, Eskelinen T, Väänänen A (2002b) Growth and diversity effects of silvicultural alternatives on an old-growth forest in Finland. Forestry 75:395–400CrossRefGoogle Scholar
  30. Lähde E, Laiho O, Norokorpi Y, Saksa T (2002c) Zuwachs von Fichte und Birke in gleich und ungleich strukturierten Beständen. Forst und Holz 57(15/16):481–485Google Scholar
  31. Liski J, Pussinen A, Pingoud K, Mäkipää R, Karjalainen T (2001) Which rotation length is favourable to carbon sequestration? Can J Forest Res 31:2004–2013CrossRefGoogle Scholar
  32. Miina J, Hotanen J-P, Salo K (2009) Modelling the abundance and temporal variation in the production of bilberry (Vaccinium myrtillus L.) in Finnish mineral soil forests. Silva Fennica 43:577–593Google Scholar
  33. Miina J, Pukkala T, Hotanen J-P, Salo K (2010) Optimizing the joint production of timber and bilberries. Forest Ecol Manage 259:2065–2071CrossRefGoogle Scholar
  34. Pukkala T (2005) Metsikön tuottoarvon ennustemallit kivennäismaan männiköille, kuusikoille ja rauduskoivikoillle. Metsätieteen aikakauskirja 3(2005):311–322Google Scholar
  35. Pukkala T (2006) Optimising the semi-continuous cover forestry of Finland. Allgemaine Forst und Jagd Zeitung 1677:141–149Google Scholar
  36. Pukkala T (2009) Population-based methods in the optimization of stand management. Silva Fennica 43(2):261–274Google Scholar
  37. Pukkala T, Kolström T (1988) Simulating the development of Norway spruce stands using transition matrix. Forest Ecol Manage 25:255–267CrossRefGoogle Scholar
  38. Pukkala T, Lähde E, Laiho O (2009) Growth and yield models for uneven-sized forest stands in Finland. Forest Ecol Manage 258:207–216CrossRefGoogle Scholar
  39. Pukkala T, Lähde E, Laiho O (2010) Optimizing the structure and management of uneven-sized stands of Finland. Forestry 83:129–142CrossRefGoogle Scholar
  40. Pukkala T, Lähde E, Laiho O (2011a) Metsän jatkuva kasvatus. Joen Forest Program Consulting, Joensuu, 229 ppGoogle Scholar
  41. Pukkala T, Lähde E, Laiho O (2011b) Using optimization for fitting individual-tree growth models for uneven-aged stands. Eur J Forest Res 130: 829–839Google Scholar
  42. Pukkala T, Lähde E, Laiho O, Salo K, Hotanen J-P (2011c) A multifunctional comparison of even-aged and uneven-aged forest management in a boreal region. Can J Forest Res 41:851–862CrossRefGoogle Scholar
  43. Pukkala T, Lähde E, Laiho O (2011d) Variable-density thinning in uneven-aged forest management – a case for Norway spruce in Finland. Forestry DOI: 10.1093/forestry/cpr020
  44. Raatikainen M, Niemelä M (1983) Mustikan poimintatarkkuuden määrittäminen. University of Jyväskylä, Department of Biology. Res Notes 32:18–23Google Scholar
  45. Romero C, Rios V, Díaz-Balteiro L (1998) Optimal forest rotation age when carbon captured is considered: Theory and applications. J Oper Res Soc 49:121–131Google Scholar
  46. Rummukainen A, Alanne H, Mikkonen E (1995) Wood procurement in the pressure of change – resource evaluation model till year 2010. Acta Forestalia Fennica 248:98Google Scholar
  47. Saksa T, Lähde E, Laiho O, Norokorpi Y (2003) Entwicklung und Leistung von Beständen mit vorherrschender Fichte nach Niederdurchforstung und Einzelstamm-Auslese. Forst und Holz 58(8):220–222Google Scholar
  48. Schulte BJ, Buongiorno J, Skog K (1999) Optimizing uneven-aged management of loblolly pine stands. Proceedings of the Society of American Foresters. 1998 National Convention, Traverse City, Michigan, September 19–23, 1998, pp 306–318Google Scholar
  49. Siiskonen H (2007) The conflict between traditional and scientific forest management in 20th century Finland. Forest Ecol Manage 249:125–133CrossRefGoogle Scholar
  50. Silvennoinen H, Alho J, Kolehmainen O, Pukkala T (2001) Prediction models of landscape preferences at the forest stand level. Landsc Urban Plann 56(1–2):11–20CrossRefGoogle Scholar
  51. Tahvonen O (2009) Optimal choice between even- and uneven-aged forestry. Nat Resources Model 22:289–321CrossRefGoogle Scholar
  52. Tahvonen O, Pukkala T, Laiho O, Lähde E, Niinimäki S (2010) Optimal management of uneven-aged Norway spruce stands. Forest Ecol Manage 260:106–115CrossRefGoogle Scholar
  53. University of Helsinki (2010) Forest Research News 1/2010 (http://www.helsinki.fi/metsatieteet/laitos/ uutiskirjeet_pdf/2010_1_For_Res_News_Univ_Helsinki.pdf). 3 pp
  54. Valkeapää A, Paloniemi R, Vainio A, Vehkalahti K, Helkama K, Karppinen H, Kuuluvainen J, Ojala A, Rantala T, Rekola M (2009) Suomen metsät ja metsäpolitiikka – kansalaisten näkemyksiä. University of Helsinki, Department of Forest Economics. Reports 55, 36 pGoogle Scholar
  55. Valkonen S, Sirén M, Piri T (2010) Poiminta- ja pienaukkohakkuut – vaihtoehtoja avohakkuulle. Metsäkustannus Oy, Tampere. 125 ppGoogle Scholar
  56. Wikström P (2000) A solution method for uneven-aged management applied for Norway spruce. Forest Sci 46(3):452–463Google Scholar
  57. Wikström P (2001) Effect of decision variable definition and data aggregation on a search process applied to a single-tree simulator. Can J Forest Res 31:1057–1066CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.School of Forest SciencesUniversity of Eastern FinlandJoensuuFinland
  2. 2.Vantaa Research UnitThe Finnish Forest Research InstituteVantaaFinland
  3. 3.Parkano Research UnitThe Finnish Forest Research InstituteParkanoFinland

Personalised recommendations