Advertisement

Forest Structure and Diversity

  • Klaus v. Gadow
  • Chun Yu Zhang
  • Christian Wehenkel
  • Arne Pommerening
  • Javier Corral-Rivas
  • Mykola Korol
  • Stepan Myklush
  • Gang Ying Hui
  • Andres Kiviste
  • Xiu Hai Zhao
Chapter
Part of the Managing Forest Ecosystems book series (MAFE, volume 23)

Abstract

This contribution presents methods that can be used to describe and analyse forest structure and diversity with particular reference to CCF management. Despite advances in remote sensing, mapped tree data in large observation windows are very rarely available in CCF management situations. Thus, although we present methods of second order statistics (SOC), the emphasis is on nearest neighbor statistics (NNS). The first section gives a general introduction and lists the objectives of the chapter. Methods of analysing non-spatial structure and diversity are presented in the second section. The third section introduces procedures for analysing unmarked and marked patterns of forest structure and diversity. Relevant R codes are provided to facilitate application of the methods. Examples of measuring differences between patterns and of reconstructing forests from samples are also presented. Finally, in Sect. 4 we discuss some important issues and summarize the main findings of this chapter.

Keywords

Tree Species Tree Size Gini Coefficient Forest Structure Lorenz Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abetz P (1976) Kann und soll die Standraumregulierung in Fichtenbeständen programmiert werden? Forst und Holz 31:117–119Google Scholar
  2. Albert M (1999) Analyse der eingriffsbedingten Strukturveränderung und Durchforstungsmodellierung in Mischbeständen. Dissertation Universität Göttingen, Hainholz Verlag, 201 pGoogle Scholar
  3. Albert M (2001) Predicting the selection of elite trees in mixed- species stands – a rule-based algorithm for silvicultural decision support systems. Allgemeine Forst und Jagd Zeitung 173(9):153–161Google Scholar
  4. AssunÇÃO R (1994) Testing spatial randomness by means of angles. Biometrics 50:513–537Google Scholar
  5. Barkman JJ (1989) A critical evaluation of minimum area concept. Vegetatio 85:89–104Google Scholar
  6. Besag J (1977) Contribution to the discussion of Dr Ripley’s paper. J R Stat Soc Ser B 39:193–195Google Scholar
  7. Besag JE, Glaves JT (1973) On the detection of spatial pattern in plant communities. Bull Int Stat Inst 45:153–158Google Scholar
  8. Biber P (1997) Analyse verschiedener Strukturaspekte von Waldbeständen mit dem Wachstumssimulator SILVA 2. Vortrag anläßlich der Jahrestagung 1997 der Sektion Ertragskunde im Deutschen Verband Forstlicher Forschungsanstalten. Tagungsbericht, pp 100–120Google Scholar
  9. Borggreve B (1891) Die Holzzucht [Growing Timber]. BerlinGoogle Scholar
  10. Buys MH, Maritz JS, Boucher C, Van Der Walt JJA (1994) A model for species-area relationships in plant communities. J Veg Sci 5:63–66Google Scholar
  11. Byth K, Ripley BD (1980) On sampling spatial patterns by distance methods. Biometrics 36:279–284Google Scholar
  12. Chung D-J (1996) Konkurrenzverhältnisse und Struktur natürlicher Pinus densiflora – Quercus variabilis – Mischwälder in Korea. Diss., Fak. f. Forstw. u. Waldökologie, Universität Göttingen Google Scholar
  13. Clark PJ, Evans FC (1954) Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35:445–453Google Scholar
  14. Condés S (1997) Simulación de parcelas arboladas con datos del 2 Inventario Forestal Nacional. Tesis Doctoral. Tesis Doctoral Escuela Técnica Superior de Ingenieros de Montes de Madrid, 616 ppGoogle Scholar
  15. Condit R, Pitman N, Leigh EG Jr, Chave J, Terborgh J, Foster RB (2002) Beta-diversity in tropical forest trees. Science 295(5555):666–669PubMedGoogle Scholar
  16. Corral-Rivas JJ, Wehenkel C, Castellanos BH, Vargas LB, Diéguez-Aranda U (2010) A permutation test of spatial randomness: application to nearest neighbour indices in forest stands. J Forest Res 15:218–225Google Scholar
  17. de Caprariis P, Lindemann RH, Collins CM (1976) A method for determining optimum sample size in species diversity studies. Math Geol 8(5):575–581Google Scholar
  18. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. http://www.R-project.org
  19. Diggle PJ (2003) Statistical analysis of spatial point patterns, 2nd edn. Arnold, London, 159 pGoogle Scholar
  20. Diggle PJ, Besag JE, Glaves JT (1976) Statistical analysis of spatial point patterns by means of distance methods. Biometrics 32:659–667Google Scholar
  21. Dixon PM (2002) Ripley's K Function. John Wiley & Sons, Ltd: 342 pGoogle Scholar
  22. Donnelly KP (1978) Simulations to determine the variance and edge effect of total nearest-neighbour distance. In: Hodder I (ed) Simulation methods in Archaeology. Cambridge University Press, London, pp 91–95Google Scholar
  23. Eyre FH (1980) Forest cover types of the US and Canada. Society of American Foresters, Washington, DCGoogle Scholar
  24. Ferris R, Humphrey JW (1999) A review of potential biodiversity indicators for application in British forests. Forestry 72(4):313–328Google Scholar
  25. Fisher RA, Corbet SA, Williams CB (1943) The relation between the number of species and the number of individuals in a random sample of an animal population. J Anim Ecol 12:42–58Google Scholar
  26. Franklin JF, Spies TA, Van Pelt R, Carey AB, Thornburgh DA, Berg DR, Lindenmayer DB, Harmon ME, Keeton WS, Shaw DC, Bible K, Chen JQ (2002) Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. Forest Ecol Manage 155(1–3):399–423Google Scholar
  27. Füldner K (1995) Strukturbeschreibung von Buchen-Edellaubholz-Mischwäldern. Cuvillier Verlag, GöttingenGoogle Scholar
  28. Füldner K, Gadow Kv (1994) How to define a thinning in a mixed deciduous beech forest. Proceedings of the IUFRO conference: mixed stands – research plots, measurements and results, models, Lousa, Portugal, pp 31–42Google Scholar
  29. Gadow Kv, Hui GY (2002) Characterizing forest spatial structure and diversity. Proceedings of the Sustainable Forestry in Southern Sweden (SUFOR) conference “Sustainable Forestry in Temperate Regions”, Lund, April 7–9Google Scholar
  30. Gadow Kv (1993) Zur Bestandesbeschreibung in der Forsteinrichtung. Forst und Holz 48(21):602–606Google Scholar
  31. Gadow Kv (1999) Waldstruktur und Diversität. Allgemeine Forst und Jagdzeitung 170(7):117–122Google Scholar
  32. Gadow Kv, Hui GY (2007) Can the tree species-area relationship be derived from prior knowledge of the tree species richness? Forest Stud/Metsanduslikud Uurimused 46:13–22Google Scholar
  33. Gadow Kv, Schmidt M (1998) Periodische Inventuren und Eingriffsinventuren. Forst und Holz 53(22):667–671Google Scholar
  34. Gadow Kv, Hui GY, Albert M (1998) Das Winkelmass – ein Strukturparameter zur Beschreibung der Individualverteilung in Waldbeständen. Centralblatt für das Gesamte Forstwesen 115:1–10Google Scholar
  35. Ganeshaiah KN, Shaanker UR (2000) Measuring biological heterogeneity of forest vegetation types: avalanche index as an estimate of biological diversity. Biodiver Conserv 9:953–963Google Scholar
  36. Ganeshaiah KN, Shaanker UR (2003) A decade of diversity. University of Agricultural Sciences Bangalore/India. Internal report, 100 pGoogle Scholar
  37. Gitay H, Rexburg SH, Wilson JB (1991) Species-area relation in a New Zealand tussock grassland, with implications for nature reserve design and for community structure. J Veg Sci 2:113–118Google Scholar
  38. Gleichmar W, Gerold D (1998) Indizes zur Charakterisierung der horizontalen Baumverteilung. Forstwissenschaftliches Centralblatt 117:69–80Google Scholar
  39. Harmon ME, Franklin JF, Swanson F, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SP, Aumen NG, Sedell JR, Lienkaemper GW, Cromack Jr, Cummins KW (1986) Ecology of coarse woody debris in temperate ecosystems. In: MacFadey A, Ford ED (eds) Advances in ecological research, vol 15, pp 133–302Google Scholar
  40. Harper JL (1977) Population biology of plants. Academic, LondonGoogle Scholar
  41. Hartung J (1985) Statistik. Lehr- und Handbuch der angewandten Statistik. R. Oldenbourg Verlag, München Wien, 806 pGoogle Scholar
  42. Hasenauer H, Leitgeb E, Sterba H (1996) Der A-Wert nach Johann als Konkurrenzindex für die Abschätzung von Durchforstungseffekten. Allgemeine Forst und Jagdzeitung 167:169–174Google Scholar
  43. Heck CR (1904) Freie Durchforstung. Springer, BerlinGoogle Scholar
  44. Hessenmöller D (2002) Modelle zur Wachstums- und Durchforstungssimulation im Göttinger Kalkbuchenwald. Doctoral Disserttion, University of Göttingen, 134 pGoogle Scholar
  45. Hessenmöller D, Gadow Kv (2001) Beschreibung der Durchmesserverteilung von Buchenbeständen mit Hilfe der bimodalen Weibullfunktion. Allgemeine Forst und Jagdzeitung 172(3):46–50Google Scholar
  46. Hines WGS, Hines RJO (1979) The Eberhardt index and the detection of nonrandomness of spatial point distributions. Biometrika 66:73–80Google Scholar
  47. Hobbs RJ, Arico S, Aronson J, Baron JS, Bridgewater P, Cramer VA, Epstein PR, Ewel JJ, Klink CA, Lugo AE, Norton D, Ojima D, Richardson DM, Sanderson EW, Valladares F, Vilà M, Zamora R, Zobel M (2006) Novel ecosystems: theoretical and management aspects of the new ecological world order. Global Ecol Biogeogr 15:1–7Google Scholar
  48. Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton/Oxford, 375 pGoogle Scholar
  49. Hui GY, Albert M (2004) Stichprobensimulationen zur Schätzung nachbarschaftsbezogener Strukturparameter in Waldbeständen. Allgemeine Forst und Jagdzeitung 175(10):199–209Google Scholar
  50. Hui GY, Gadow Kv (2002) Das Winkelmass – Herleitung des optimalen Standardwinkels. Allgemeine Forst und Jagdzeitung 173(10):173–177Google Scholar
  51. Hui GY, Albert M, Gadow Kv (1998) Das Umgebungsmaß als Parameter zur Nachbildung von Bestandesstrukturen. Forstwissenschaftliches Centralblatt 117:258–266Google Scholar
  52. Hui GY, Albert M, Chen BW (2003) Reproduktion der Baumverteilung im Bestand unter Verwendung des Strukturparameters Winkelmaß. Allgemeine Forst und Jagdzeitung 174:109–116Google Scholar
  53. Hui GY, Gadow Kv, Hu YB, Xu H (2007) Structure-based forest management. China Forestry Publishing House, Beijing, 200 pp (in Chinese, with English abstract)Google Scholar
  54. Hui GY, Zhao XH, Zhao ZH, Gadow Kv (2011) Evaluating tree species spatial diversity based on neighborhood relationships. Forest Science 57(4):292–300 http://www.safnet.org/publications/forscience/index.cfm Google Scholar
  55. Please update page numbers in Reference “Hyytiäinen and Haigth (2011).” Hyytiäinen K, Haigth RG (2011) Optimizing continuous cover forest management. In: Pukkala T, Gadow von K (eds) Economics of continuous cover forestry. Springer, Dordrecht, pp XXXGoogle Scholar
  56. Illian J, Penttinen A, Stoyan H, Stoyan D (2008) Statistical analysis and modelling of spatial point patterns. Wiley, Chichester, 534 pGoogle Scholar
  57. Jaehne S, Dohrenbusch A (1997) Ein Verfahren zur Beurteilung der Destandesdivertität. Summary: a method to evaluate forest stand diversity. Forstwissenshaftliches Centralblatt 116:333–345Google Scholar
  58. Jenssen M, Hofmann G (2002) Die Quantifizierung ökologischer Potentiale der Phytodiversität und Selbstorganisation der Wälder. Beiträge zur Forstwirtschaft und Landschaftsökolgie 37, pp 18–27 Google Scholar
  59. Johann K (1982) Der„ A-Wert – “ein objektiver Parameter zur Bestimmung der Freistellungsstärke von Zentralbäumen. [The “A-thinning index” – an objective parameter for the determination of release intensity of frame trees]. Tagungsbericht der Jahrestagung 1982 der Sektion Ertragskunde im Deutschen Verband Forstlicher Forschungsanstalten in Weibersbrunn, pp 146–158Google Scholar
  60. Kangas A, Maltamo M (2002) Anticipating the variance of predicted stand volume and timber assortments with respect to stand characteristics and field measurements. Silva Fennica 36(4):799–811Google Scholar
  61. Kareiva P, Watts S, McDonald R, Boucher T (2007) Domesticated nature: shaping landscapes and ecosystems for human welfare. Science 316(5833):1866–1869PubMedGoogle Scholar
  62. Kato F, Mülder D (1983) Qualitative Gruppendurchforstung der Buche. Allgemeine Forst und Jagdzeitung 154:139–145Google Scholar
  63. Kinnunen J, Maltamo M, Päivinen R (2007) Standing volume estimates of forests in Russia: how accurate is the published data. Forestry 80(1):53–64Google Scholar
  64. Kint V, Meirvenne MV, Nachtergale L, Geuden G, Lust N (2003) Spatial methods for quantifying forest stand structure development: A comparison between nearest- neighbour indices and variogram analysis. Forest Sci 49(1):36–49Google Scholar
  65. Kint V, Marc Mv, Lieven N, Guy G, Noel L (2004) Spatial methods for quantifying forest stand structure development: A comparison between nearest-neighbor indices and variogram analysis. Forest Sci 49(1):36–49Google Scholar
  66. Kiviste A, Laarmann D, Hordo M, Sims A (2007) Factors influencing tree mortality on the basis of permanent forest sample plot data. Paper presented at the International Workshop on disturbance regimes in a changing environment, 03–06 October 2007 in Tukums, LatviaGoogle Scholar
  67. Kleinn Ch, Ståhl G, Fehrmann L, Kangas A (2010) Issues in forest inventories as an input to planning and decision processes. Allgemeine Forst und Jagdzeitung 181(11/12):205–210Google Scholar
  68. Knoebel BR, Burkhart HE (1991) A bivariate distribution approach to modelling forest diameter distributions at two points of time. Biometrics 47:241–253Google Scholar
  69. Knoke T, Seifert T (2008) Integrating selected ecological effects of mixed European beech–Norway spruce stands in bioeconomic modelling. Ecol Model 210:487–498Google Scholar
  70. Koop H (1981) Vegetatiesstructuur en dynamiek van twee natuurlijke bossen: het Neuenburger en Hasbrucher Urwald, Verslagen van landbouwkundige onderzoekingen 904 PUDOW WageningenGoogle Scholar
  71. Koop H (1989) Forest dynamics. Springer, New YorkGoogle Scholar
  72. Korpel S (1992) Ergebnisse der Urwaldforschung für die Waldwirtschaft im Buchen-Ökosystem. Allgemeine Forstzeitschrift 47(21):1148–1152Google Scholar
  73. Kramer H (1988) Waldwachstumslehre. Paul Parey, HamburgGoogle Scholar
  74. Kramer H, Akça A (1995) Leitfaden zur Waldmesslehre. Sauerländer, JD, Frankfurt a. Main, p 298Google Scholar
  75. Krebs ChJ (1999) Ecological methodology, 2nd edn. Addison Wesley Longman, Inc, Menlo Park, 620 pGoogle Scholar
  76. Lappi J (1997) A longitudinal analysis of height/diameter curves. Forest Sci 43(4):555–570Google Scholar
  77. Law R, Illian J, Burslem DFRP, Gratzer G, Gunatilleke CVS, Gunatilleke IAUN (2009) Ecological information from spatial patterns of plants: insights from point process theory. J Ecol 97:616–628Google Scholar
  78. Lawton JH (1999) Are there general laws in ecology? Oikos 84:177–192Google Scholar
  79. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280Google Scholar
  80. Leibundgut H (1978) Die Waldpflege. Paul Haupt, Bern und StuttgartGoogle Scholar
  81. Leisch F (2004) FlexMix: a general framework for finite mixture models and latent class regression in R. J Stat Softw 11(8). http://www.jstatsoft.org/v11/i08/
  82. Lepě J, Stursa J (1989) Species-area curve, life history strategies, and succession: a field test of relationships. Vegetatio 83:249–257Google Scholar
  83. Lewandowski A, Pommerening A (1997) Zur Beschreibung der Waldstruktur – Erwartete und beobachtete Artendurchmischung. Forstwissenschaftliches Centralblatt 116:129–139Google Scholar
  84. Lewandowski A, Gadow Kv (1997) Ein heuristischer Ansatz zur Reproduk- tion von Waldbesta ̈nden [A heuristic method for reproducing forest stands]. Allgemeine Forst und Jagdzeitung 168:170–174Google Scholar
  85. Liu C, Zhang L, Davis CJ, Solomon DS, Gove JH (2002) A finite mixture model for characterizing the diameter distributions of mixed-species forest stands. Forest Sci 48(4):653–661Google Scholar
  86. Lotwick HW, Silverman BW (1982) Methods for analysing spatial processes of several types of points. J R Stat Soc Ser B 44:406–413Google Scholar
  87. Luhmann N (1995) Social systems. Stanford University Press, StanfordGoogle Scholar
  88. Maguire DA, Mainwaring D, Halpern CB (2006) Stand dynamics after variable retention harvesting in mature Douglas-fir forests of western North America. Allgemeine Forst und Jagdzeitung 177:120–131Google Scholar
  89. Margalef R (1957) Information theory in ecology. Genet Syst 3:36–71Google Scholar
  90. Mason B, Kerr G, Pommerening A, Edwards C, Hale S, Ireland D, Moore R (2005) Continuous cover forestry in British conifer forests. In: Forest Research (2005). Annual report and accounts 2003–2004, United Kingdom, pp 38–53Google Scholar
  91. May RM (1975) Patterns of species abundance and diversity. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Belknap Harvard University, Cambridge, pp 81–120Google Scholar
  92. McComb WC, Spies TA, Emmingham WH (1993) Douglas-fir forests: managing for timber and mature forest habitat. J Forest 91(12):31–42Google Scholar
  93. McElhinny C, Gibbons P, Brack C, Bauhus J (2005) Forest and woodland stand structural complexity: Its definition and measurement. Forest Ecol Manage 218:1–24Google Scholar
  94. Mehtätalo L (2004) A longitudinal height-diameter model for Norway spruce in Finland. Can J Forest Res 34:131–140Google Scholar
  95. Mitscherlich G, Ganssen R (1951) Die Ergebnisse zweier Buchendurchforstungsversuche in höheren Lagen des Schwarzwaldes. Allgemeine Forst und Jagdzeitung 123:1–15Google Scholar
  96. Moeur M (1993) Crown width and foliage weight of northern Rocky Mountain conifers, USDA, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, Utah, Research Paper INT-283, p 14Google Scholar
  97. Møller J, Waagepetersen RP (2007) Modern statistics for spatial point processes. Scand J Stat 34:643–684Google Scholar
  98. Monod J (1950) La technique de culture continue, the´orie et applications. Annales de l’Institut Pasteur 79:390–410Google Scholar
  99. Motz K, Sterba H, Pommerening A (2010) Sampling measures of tree diversity. Forest Ecol Manage 260:1985–1996Google Scholar
  100. Murray DM, Gadow K (1993) A flexible yield model for regional timber forecasting. Southern J Appl Forest 17(2):112–115Google Scholar
  101. Nothdurft A, Saborowski J, Nuske RS, Stoyan D (2010) Density estimation based on k-tree sampling and point pattern reconstruction. Can J Forest Res 40:953–967Google Scholar
  102. Nyland RD (2002) Silviculture – concepts and applications, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  103. O’Hara KL, Gersonde RF (2004) Stocking control concepts in uneven-aged silviculture. Forestry 77(2):131–143Google Scholar
  104. Penttinen A, Stoyan D, Henttonen HM (1992) Marked point process in forest statistics. Forest Sci 38:806–824Google Scholar
  105. Pielou EC (1961) Segregation and symmetry in two-species populations as studied by nearest-neighbour relations. J Ecol 49:255–269Google Scholar
  106. Pommerening A (1997) Eine Analyse neuer Ansätze zur Bestandesinventur in strukturreichen Wäldern [An analysis of new approaches towards stand inventory in structure-rich forests]. PhD dissertation, Faculty of Forestry and Forest Ecology, University of Göttingen, Cuvillier Verlag Göttingen, 187 ppGoogle Scholar
  107. Pommerening A (2002) Approaches to quantifying forest structures. Forestry 75:305–324Google Scholar
  108. Pommerening A (2006) Evaluating structural indices by reversing forest structural analysis. Forest Ecol Manage 224:266–277Google Scholar
  109. Pommerening A (2008) Analysing and modelling spatial woodland structure. Habilitationsschrift (DSc dissertation), University of Natural Resources and Applied Life Sciences, Vienna, AustriaGoogle Scholar
  110. Pommerening A, Stoyan D (2006) Edge-correction needs in estimating indices of spatial forest structure. Can J Forest Res 36:1723–1739Google Scholar
  111. Pommerening A, Stoyan D (2008) Reconstructing spatial tree point patterns from nearest neighbour summary statistics measured in small subwindows. Can J Forest Res 38:1110–1122Google Scholar
  112. Preston FW (1962) The canonical distribution of commonness and rarity: Part I. Ecology 43:185–215Google Scholar
  113. Pretzsch H (1995) Perspektiven einer modellorientierten Waldwachstumsforschung. Forstwissenschaftliches Centralblatt 114:188–209Google Scholar
  114. Pretzsch H (1997) Analysis and modeling of spatial stand structures. Methodological considerations based on mixed beech-Larch stands in Lower Saxony. Forest Ecol Manage 97:237–253Google Scholar
  115. Pretzsch H (2002) Grundlagen der Waldwachstumsforschung. [The priciples of forest growth science.]. Parey Buchverlag, BerlinGoogle Scholar
  116. Pretzsch H (2003) Diversität und Produktivität von Wäldern (Diversity and Productivity of Forests). Allgemeine Forst und Jagdzeitung 174(5/6):88–97Google Scholar
  117. PRODAN, M (1966) Forest Biometrics. Oxford: Pergamon Press, 447 pGoogle Scholar
  118. Pullan W, Bhadeshia H (eds) (2000) Structure in science and art. Cambridge University Press, CambridgeGoogle Scholar
  119. Puumalainen (1996) Die Beta-Funktion und ihre analytische Parameterbestimmung für die Darstellung von Durchmesserverteilungen. Georg-August-Universität Göttingen. Working Paper 15–96Google Scholar
  120. Puumalainen J (1998) Optimal cross-cutting and sensitivity analysis for various log dimension constrains by using dynamic programming approach. Scandinavian J Forest Res 13:74–82 Google Scholar
  121. Puumalainen J, Gadow Kv, Korhonen K (1998) Flexible Ergebnisberechnung einer Eingriffsinventur. [Flexible calculation of a thinning inventory]. Forstarchiv 69:145–150Google Scholar
  122. Reininger H (1987) Zielstärken-Nutzung oder die Plenterung des Altersklassenwaldes. Österreichischer Agrarverlag, WienGoogle Scholar
  123. Richter J (1994) Neue Aspekte der Fichtendurchforstung. Allgemeine Forst und Jagdzeitung 49(12):632–637Google Scholar
  124. Ripley BD (1977) Modelling spatial patterns (with discussion). J R Stat Soc Ser B 39:172–212Google Scholar
  125. Ruggiero LF, Jones LC, Aubry KB (1991) Plant and animal habitats associations in Douglas-fir forests of the Pacific Northwest: an overview. In: Ruggiero LF, Aubry KB, Carey AB, Huff HM (tecn cords) Wildlife and vegetation of unmanage Douglas-fir forest. USDA Forest Service, GTR-PNW-285, pp 447–462Google Scholar
  126. Sanderson EW, Jaiteh M, Levy MA, Redfrod KH, Wannebo AV, Woolmer G (2002) The human footprint and the last of the wild. Bioscience 52:891–904Google Scholar
  127. Schädelin W (1942) Die Auslesedurchforstung als Erziehungsbetrieb höchster Wertleistung, 3rd edn, BernGoogle Scholar
  128. Schmidt M, Kiviste A, Gadow Kv (2011) A spatially explicit height-diameter model for Scots Pine in Estonia. Eur J Forest Res. doi: 10.1007/s10342-010-0434-8
  129. Schober R (1991) Eclaircies par le haut et arbres d’avenir. Revue Forestière XLIII:385–401Google Scholar
  130. Scholes RJ, Biggs R (2005) A biodiversity intactness index. Nature 434(3):45–49PubMedGoogle Scholar
  131. Schreuder HT, Gregoire TG, Wood GB (1993) Sampling methods for multiresource forest inventory. Wiley, New York, 446 pGoogle Scholar
  132. Schröder J (1998) Beschreibung von Bestandesstrukturen im Knysna-Wald, Südafrika. Diploma thesis, Faculty of Forestry, University Göttingen, 37 pGoogle Scholar
  133. Schütz J-Ph (1989) Der Plenterbetrieb. Lecture Notes Waldbau III, ETH Zürich, p 54Google Scholar
  134. Schütz J-P (2002) Silvicultural tools to develop irregular and diverse forest structures. Forestry 75:329–338Google Scholar
  135. Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, UrbanaGoogle Scholar
  136. Shimatani K, Kubota Y (2004) Quantitative assessment of multispecies spatial pattern with high species diversity. Ecol Res 19:149–163Google Scholar
  137. Simpson EH (1949) Measurement of diversity. Nature 163:688Google Scholar
  138. Smaltschinski Th (1998) Charakterisierung von Baumverteilungen. Forstwissenschaftliches Centralblatt 117:355–361Google Scholar
  139. Spanos KA, Feest A (2007) A review of the assessment of biodiversity in forest ecosystems. Manage Environ Qual 18(4):475–486Google Scholar
  140. Spies TA (1997) Forest stand structure, composition, and function. In: Creating a forestry for the 21st century: the science of ecosystem management. Oxford University PressGoogle Scholar
  141. Staudhammer CL, LeMay VM (2001) Introduction and evaluation of possible indices of stand structural diversity. Can J Forest Res 31:1105–1115Google Scholar
  142. Staupendahl K, Puumalainen J (2000) Modellierung des Einflusses von Durchforstungen auf die Durchmesserverteilung von gleichaltrigen Fichtenreibeständen. Forstwissenschaftliches Centralblatt 116(4):249–262Google Scholar
  143. Staupendahl K, Gadow Kv (2008) Eingriffsinventuren und Dynamisches Betriebswerk – Instrumente der Operativen Planung im Forstbetrieb. Forstarchiv 79:16–27Google Scholar
  144. Staupendahl K, Zucchini W (2006) Estimating the spatial distribution in forest stands by counting small angles between nearest neighbours. Allgemeine Forst und Jagdzeitung 177(8/9):160–168Google Scholar
  145. Sterba H (1981) Natürlicher Bestockungsgrad und Reinecke’s SDI. Centralblatt für das gesamte Forstwesen 98(2):101–116Google Scholar
  146. Sterba H, Zingg A (2006) Abstandsabhängige und abstandsunabhängige Bestandesstrukturbeschreibung. Allgemeine Forst und Jagdzeitung 177(8/9):169–176Google Scholar
  147. Stöcker G (2002) Analyse und Vergleich von Bestandesstrukturen naturnaher Fichtenwälder mit Lorenz-Funktionen und Gini-Koeffizienten. Centralblatt für das gesamte Forstwesen 119: 12–39Google Scholar
  148. Stoyan D, Penttinen A (2000) Recent applications of point process methods in forestry statistics. Stat Sci 15:61–78Google Scholar
  149. Stoyan D, Stoyan S (1994) Fractals, random shapes and point fields. In: Methods of geometrical statistics, Wiley, Chichester, UK, 394 pGoogle Scholar
  150. Suzuki SN, Kachi N, Suzuki J-I (2008) Development of a local size-hierarchy causes regular spacing of trees in an even-aged Abies forest: analyses using spatial autocorrelation and the mark correlation function. Ann Bot 102:435–441PubMedGoogle Scholar
  151. Temesgen H, Gadow Kv (2003) Generalized height-diameter models–an application for major tree species in complex stands of interior British Columbia. Eur J Forest Res 123(1):45–51Google Scholar
  152. Tjørve E (2003) Shapes and functions of species-area curves: a review of possible models. J Biogeogr 30:827–835Google Scholar
  153. Torquato S (2002) Random heterogeneous materials. Microstructure and macroscopic properties. Interdisciplinary applied mathematics 16. Springer, New YorkGoogle Scholar
  154. Torres RJM (2000) Sostenibiladad del volumen de cosecha calculado con el método de ordenación de montes. Madera y Bosques 6(2):57–72Google Scholar
  155. Upton G, Fingleton B (1989) Spatial data analysis by example, vol 2: categorical and directional data. Wiley, Chichester, 416 pGoogle Scholar
  156. Upton G, Fingleton B (1990) Spatial data analysis by example, vol 1: point pattern and quantitative data, 2nd edn. Wiley, Chichester, 410 pGoogle Scholar
  157. Van Laar A, Akça A (2007) Forest mensuration. Springer, Dordrecht, 418 pGoogle Scholar
  158. Wehenkel C, Corral-Rivas JJ, Hernandez-Díaz JC, Gadow Kv (2011) Estimating Balanced Structure Areas in multi-species forests on the Sierra Madre Occidental, Mexico. Ann Forest Sci 68. doi: 10.1007/s13595-011-0027-9
  159. Wenk G (1996) Durchmesserverteilungen im Buchenplenterwald. Tagungsband des Deutschen Verbandes Forstlicher Versuchsanstalten. Sektion Ertragskunde, Mai 1996 in NeresheimGoogle Scholar
  160. Westphal C, Tremer N, v Oheimb G, Hansen J, Gadow Kv, Härdtle W (2006) Is the reverse J-shaped diameter distribution universally applicable in European virgin beech forests? Forest Ecol Manage 223:75–83Google Scholar
  161. Whittaker RH (1972) Evolution and measurement of species diversity. Int Assoc Plant Taxon 21:213–251Google Scholar
  162. Williams CB (1964) Patterns in the balance of nature. Academic, LondonGoogle Scholar
  163. Williams MR (1995) An extreme-value function model of the species incidence and species-area relationship. Ecology 76:2607–2616Google Scholar
  164. Wood SN (2006) Generalized additive models: an introduction with R. Chapman & Hall/CRC, Boca Raton, p 391Google Scholar
  165. Xia FC (2007) Study on the plant biodiversity and spatial patterns of broad-leaved Korean Pine forest in Changbai Mountain. Doctoral dissertation, Beijing Forestry University, BeijingGoogle Scholar
  166. Zucchini W, Schmidt M, Gadow Kv (2001) A model for the diameter-height distribution in an uneven-aged beech forest and a method to assess the fit of such models. Silva Fennica 35(2):168–183Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Klaus v. Gadow
    • 1
  • Chun Yu Zhang
    • 2
  • Christian Wehenkel
    • 3
  • Arne Pommerening
    • 4
  • Javier Corral-Rivas
    • 3
  • Mykola Korol
    • 5
  • Stepan Myklush
    • 5
  • Gang Ying Hui
    • 6
  • Andres Kiviste
    • 7
  • Xiu Hai Zhao
    • 2
  1. 1.Burckhardt InstituteGeorg-August University GöttingenGöttingenGermany
  2. 2.Beijing Forestry UniversityBeijingChina
  3. 3.Universidad Juarez del Estado de DurangoDurangoMexico
  4. 4.Swiss College of Agriculture SHLBern University of Applied SciencesZollikofenSwitzerland
  5. 5.Ukrainian National Forestry UniversityLvivUkraine
  6. 6.Chinese Academy of ForestryBeijingChina
  7. 7.Estonian University of Life SciencesTartuEstonia

Personalised recommendations