Skip to main content

Genetic Aspects of Folate Metabolism

  • Chapter
  • First Online:
Water Soluble Vitamins

Part of the book series: Subcellular Biochemistry ((SCBI,volume 56))

Abstract

The vitamin folate functions within the cell as a carrier of one-carbon units. The requirement for one-carbon transfers is ubiquitous and all mammalian cells carry out folate dependent reactions. In recent years, low folate status has been linked to risk of numerous adverse health conditions throughout life from birth defects and complications of pregnancy to cardiovascular disease, cancer and cognitive dysfunction in the elderly. In many instances inadequate intake of folate seems to be the primary contributor but there is also evidence that an underlying genetic susceptibility can play a modest role by causing subtle alterations in the availability, metabolism or distribution of intermediates in folate related pathways. Folate linked one-carbon units are essential for DNA synthesis and repair and as a source of methyl groups for biological methylation reactions. The notion of common genetic variants being linked to risk of disease was relatively novel in 1995 when the first functional folate-related polymorphism was discovered. Numerous polymorphisms have now been identified in folate related genes and have been tested for functionality either as a modifier of folate status or as being associated with risk of disease. Moreover, there is increasing research into the importance of folate-derived one-carbon units for DNA and histone methylation reactions, which exert crucial epigenetic control over cellular protein synthesis. It is thus becoming clear that genetic aspects of folate metabolism are wide-ranging and may touch on events as disparate as prenatal imprinting to cancer susceptibility. This chapter will review the current knowledge in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afman LA, Trijbels FJ, Blom HJ (2003) The H475Y polymorphism in the glutamate carboxypeptidase II gene increases plasma folate without affecting the risk for neural tube defects in humans. J Nutr 133:75–77

    PubMed  CAS  Google Scholar 

  • Amorim MR, Lima MA, Castilla EE, Orioli IM (2007) Non-Latin European descent could be a requirement for association of NTDs and MTHFR variant 677C > T: a meta-analysis. Am J Med Genet A 143A:1726–1732

    PubMed  CAS  Google Scholar 

  • Ananth CV, Elsasser DA, Kinzler WL, Peltier MR, Getahun D, Leclerc D, Rozen RR (2007) Polymorphisms in methionine synthase reductase and betaine-homocysteine S-methyltransferase genes: risk of placental abruption. Mol Genet Metab 91:104–110

    PubMed  CAS  Google Scholar 

  • Anderson DD, Woeller CF, Stover PJ (2007) Small ubiquitin-like modifier-1 (SUMO-1) modification of thymidylate synthase and dihydrofolate reductase. Clin Chem Lab Med 45:1760–1763

    PubMed  CAS  Google Scholar 

  • Anguera MC, Field MS, Perry C, Ghandour H, Chiang EP, Selhub J, Shane B, Stover PJ (2006) Regulation of folate-mediated one-carbon metabolism by 10-formyltetrahydrofolate dehydrogenase. J Biol Chem 281:18335–18342

    PubMed  CAS  Google Scholar 

  • Antony AC (2007) In utero physiology: role of folic acid in nutrient delivery and fetal development. Am J Clin Nutr 85:598S–603S

    PubMed  CAS  Google Scholar 

  • Ashfield-Watt PA, Pullin CH, Whiting JM, Clark ZE, Moat SJ, Newcombe RG, Burr ML, Lewis MJ, Powers HJ, McDowell IF (2002) Methylenetetrahydrofolate reductase 677C→T genotype modulates homocysteine responses to a folate-rich diet or a low-dose folic acid supplement: a randomized controlled trial. Am J Clin Nutr 76:180–186

    PubMed  CAS  Google Scholar 

  • Bagley PJ, Selhub J (1998) A common mutation in the methylenetetrahydrofolate reductase gene is associated with an accumulation of formylated tetrahydrofolates in red blood cells. Proc Natl Acad Sci USA 95:13217–13220

    PubMed  CAS  Google Scholar 

  • Bailey LB, Gregory JF 3rd (1999) Folate metabolism and requirements. J Nutr 129:779–782

    PubMed  CAS  Google Scholar 

  • Bailey LB, Duhaney RL, Maneval DR, Kauwell GP, Quinlivan EP, Davis SR, Cuadras A, Hutson AD, Gregory JF 3rd (2002) Vitamin B-12 status is inversely associated with plasma homocysteine in young women with C677T and/or A(1298)C methylenetetrahydrofolate reductase polymorphisms. J Nutr 132:1872–1878

    PubMed  CAS  Google Scholar 

  • Bandarian V, Ludwig ML, Matthews RG (2003) Factors modulating conformational equilibria in large modular proteins: a case study with cobalamin-dependent methionine synthase. Proc Natl Acad Sci USA 100:8156–8163

    PubMed  CAS  Google Scholar 

  • Barber RC, Shaw GM, Lammer EJ, Greer KA, Biela TA, Lacey SW, Wasserman CR, Finnell RH (1998) Lack of association between mutations in the folate receptor-alpha gene and spina bifida. Am J Med Genet 76:310–317

    PubMed  CAS  Google Scholar 

  • Barber R, Shalat S, Hendricks K, Joggerst B, Larsen R, Suarez L, Finnell R (2000) Investigation of folate pathway gene polymorphisms and the incidence of neural tube defects in a Texas hispanic population. Mol Genet Metab 70:45–52

    PubMed  CAS  Google Scholar 

  • Baric I, Fumic K, Glenn B, Cuk M, Schulze A, Finkelstein JD, James SJ, Mejaski-Bosnjak V, Pazanin L, Pogribny IP, Rados M, Sarnavka V, Scukanec-Spoljar M, Allen RH, Stabler S, Uzelac L, Vugrek O, Wagner C, Zeisel S, Mudd SH (2004) S-adenosylhomocysteine hydrolase deficiency in a human: A genetic disorder of methionine metabolism. Proc Natl Acad Sci USA 101:4234–4239

    PubMed  CAS  Google Scholar 

  • Basten GP, Duthie SJ, Pirie L, Vaughan N, Hill MH, Powers HJ (2006) Sensitivity of markers of DNA stability and DNA repair activity to folate supplementation in healthy volunteers. Br J Cancer 94:1942–1947

    PubMed  CAS  Google Scholar 

  • Baumgartner ER, Stokstad EL, Wick SH, Watson JE, Kusano G (1985) Comparison of folic acid coenzyme distribution patterns in patients with methylenetetrahydrofolate reductase and methionine synthetase deficiencies. Pediatr Res 19:1288–1292

    PubMed  CAS  Google Scholar 

  • Boccia S, Hung R, Ricciardi G, Gianfagna F, Ebert MP, Fang JY, Gao CM, Gotze T, Graziano F, Lacasana-Navarro M, Lin D, Lopez-Carrillo L, Qiao YL, Shen H, Stolzenberg-Solomon R, Takezaki T, Weng YR, Zhang FF, van Duijn CM, Boffetta P, Taioli E (2008) Meta- and pooled analyses of the methylenetetrahydrofolate reductase C677T and A(1298)C polymorphisms and gastric cancer risk: a huge-GSEC review. Am J Epidemiol 167:505–516

    PubMed  Google Scholar 

  • Bosco P, Gueant-Rodriguez RM, Anello G, Barone C, Namour F, Caraci F, Romano A, Romano, C, Gueant JL (2003) Methionine synthase (MTR) (2756) (A→G) polymorphism, double heterozygosity methionine synthase (2756) AG/methionine synthase reductase (MTRR) 66 AG, and elevated homocysteinemia are three risk factors for having a child with Down syndrome. Am J Med Genet A 121A:219–224

    PubMed  Google Scholar 

  • Botto LD, Yang Q (2000) 5,10-Methylenetetrahydrofolate reductase gene variants and congenital anomalies: a HuGE review. Am J Epidemiol 151:862–877

    PubMed  CAS  Google Scholar 

  • Boyles AL, Billups AV, Deak KL, Siegel DG, Mehltretter L, Slifer SH, Bassuk AG, Kessler JA, Reed MC, Nijhout HF, George TM, Enterline DS, Gilbert JR, Speer MC (2006) Neural tube defects and folate pathway genes: family-based association tests of gene-gene and gene-environment interactions. Environ Health Perspect 114:1547–1552

    PubMed  CAS  Google Scholar 

  • Brody LC, Conley M, Cox C, Kirke PN, McKeever MP, Mills JL, Molloy AM, O’Leary VB, Parle-McDermott A, Scott JM, Swanson DA (2002) A polymorphism, R653Q, in the trifunctional enzyme methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase/formyltetrahydrofolate synthetase is a maternal genetic risk factor for neural tube defects: report of the Birth Defects Research Group. Am J Hum Genet 71:1207–1215

    PubMed  CAS  Google Scholar 

  • Brouns R, Ursem N, Lindemans J, Hop W, Pluijm S, Steegers E, Steegers-Theunissen R (2008) Polymorphisms in genes related to folate and cobalamin metabolism and the associations with complex birth defects. Prenat Diagn 28:485–493

    PubMed  CAS  Google Scholar 

  • Buist NR, Glenn B, Vugrek O, Wagner C, Stabler S, Allen RH, Pogribny I, Schulze A, Zeisel SH, Baric I, Mudd SH (2006) S-adenosylhomocysteine hydrolase deficiency in a 26-year-old man. J Inherit Metab Dis 29:538–545

    PubMed  CAS  Google Scholar 

  • Burdge GC, Lillycrop KA, Phillips ES, Slater-Jefferies JL, Jackson AA, Hanson MA (2009) Folic acid supplementation during the juvenile-pubertal period in rats modifies the phenotype and epigenotype induced by prenatal nutrition. J Nutr 139:1054–1060

    PubMed  CAS  Google Scholar 

  • Caudill MA, Wang JC, Melnyk S, Pogribny IP, Jernigan S, Collins MD, Santos-Guzman J, Swendseid ME, Cogger EA, James SJ (2001) Intracellular S-adenosylhomocysteine concentrations predict global DNA hypomethylation in tissues of methyl-deficient cystathionine beta-synthase heterozygous mice. J Nutr 131:2811–2818

    PubMed  CAS  Google Scholar 

  • Chamberlin ME, Ubagai T, Mudd SH, Thomas J, Pao VY, Nguyen TK, Levy HL, Greene C, Freehauf C, Chou JY (2000) Methionine adenosyltransferase I/III deficiency: novel mutations and clinical variations. Am J Hum Genet 66:347–355

    PubMed  CAS  Google Scholar 

  • Chen LH, Liu ML, Hwang HY, Chen LS, Korenberg J, Shane B (1997) Human methionine synthase. cDNA cloning, gene localization, and expression. J Biol Chem 272:3628–3634

    PubMed  CAS  Google Scholar 

  • Chen J, Giovannucci E, Hankinson SE, Ma J, Willett WC, Spiegelman D, Kelsey KT, Hunter DJ (1998) A prospective study of methylenetetrahydrofolate reductase and methionine synthase gene polymorphisms, and risk of colorectal adenoma. Carcinogenesis 19:2129–2132

    PubMed  CAS  Google Scholar 

  • Chen J, Stampfer MJ, Ma J, Selhub J, Malinow MR, Hennekens CH, Hunter DJ (2001) Influence of a methionine synthase (D919G) polymorphism on plasma homocysteine and folate levels and relation to risk of myocardial infarction. Atherosclerosis 154:667–672

    PubMed  CAS  Google Scholar 

  • Choi SW, Mason JB (2002) Folate status: effects on pathways of colorectal carcinogenesis. J Nutr 132:2413S–2418S

    PubMed  CAS  Google Scholar 

  • Christensen KE, MacKenzie RE (2006) Mitochondrial one-carbon metabolism is adapted to the specific needs of yeast, plants and mammals. Bioessays 28:595–605

    PubMed  CAS  Google Scholar 

  • Christensen B, Arbour L, Tran P, Leclerc D, Sabbaghian N, Platt R, Gilfix BM, Rosenblatt DS, Gravel RA, Forbes P, Rozen R (1999) Genetic polymorphisms in methylenetetrahydrofolate reductase and methionine synthase, folate levels in red blood cells, and risk of neural tube defects. Am J Med Genet 84:151–157

    PubMed  CAS  Google Scholar 

  • Chuang CZ, Boyles A, Legardeur B, Su J, Japa S, Lopez SA (2006) Effects of riboflavin and folic acid supplementation on plasma homocysteine levels in healthy subjects. Am J Med Sci 331:65–71

    PubMed  Google Scholar 

  • Chwatko G, Boers GH, Strauss KA, Shih DM, Jakubowski H (2007) Mutations in methylenetetrahydrofolate reductase or cystathionine beta-synthase gene, or a high-methionine diet, increase homocysteine thiolactone levels in humans and mice. FASEB J 21:1707–1713

    PubMed  CAS  Google Scholar 

  • Couce ML, Boveda MD, Castineiras DE, Corrales FJ, Mora MI, Fraga JM, Mudd SH (2008) Hypermethioninaemia due to methionine adenosyltransferase I/III (MAT I/III) deficiency: diagnosis in an expanded neonatal screening programme. J Inherit Metab Dis 31(Suppl 2):233–239

    Google Scholar 

  • Czeizel AE, Dudas I (1992) Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N Engl J Med 327:1832–1835

    PubMed  CAS  Google Scholar 

  • da Costa KA, Kozyreva OG, Song J, Galanko JA, Fischer LM, Zeisel SH (2006) Common genetic polymorphisms affect the human requirement for the nutrient choline. FASEB J 20:1336–1344

    PubMed  Google Scholar 

  • Daly LE, Kirke PN, Molloy A, Weir DG, Scott JM (1995) Folate levels and neural tube defects. Implications for prevention. JAMA 274:1698–1702

    PubMed  CAS  Google Scholar 

  • D’Angelo A, Coppola A, Madonna P, Fermo I, Pagano A, Mazzola G, Galli L, Cerbone AM (2000) The role of vitamin B12 in fasting hyperhomocysteinemia and its interaction with the homozygous C677T mutation of the methylenetetrahydrofolate reductase (MTHFR) gene. A case-control study of patients with early-onset thrombotic events. Thromb Haemost 83:563–570

    PubMed  Google Scholar 

  • Daubner SC, Matthews RG (1982) Purification and properties of methylenetetrahydrofolate reductase from pig liver. J Biol Chem 257:140–145

    PubMed  CAS  Google Scholar 

  • de Bree A, Verschuren WM, Bjorke-Monsen AL, van der Put NM, Heil SG, Trijbels FJ, Blom HJ (2003) Effect of the methylenetetrahydrofolate reductase 677C→T mutation on the relations among folate intake and plasma folate and homocysteine concentrations in a general population sample. Am J Clin Nutr 77:687–693

    PubMed  Google Scholar 

  • de Franchis R, Botto LD, Sebastio G, Ricci R, Iolascon A, Capra V, Andria G, Mastroiacovo P (2002) Spina bifida and folate-related genes: a study of gene-gene interactions. Genet Med 4:126–130

    PubMed  Google Scholar 

  • Dekou V, Gudnason V, Hawe E, Miller GJ, Stansbie D, Humphries SE (2001) Gene-environment and gene-gene interaction in the determination of plasma homocysteine levels in healthy middle-aged men. Thromb Haemost 85:67–74

    PubMed  CAS  Google Scholar 

  • De Marco P, Merello E, Calevo MG, Mascelli S, Raso A, Cama A, Capra V (2006) Evaluation of a methylenetetrahydrofolate-dehydrogenase (1958)G>A polymorphism for neural tube defect risk. J Hum Genet 51:98–103

    PubMed  CAS  Google Scholar 

  • Deng L, Elmore CL, Lawrance AK, Matthews RG, Rozen R (2008) Methionine synthase reductase deficiency results in adverse reproductive outcomes and congenital heart defects in mice. Mol Genet Metab 94:336–342

    PubMed  CAS  Google Scholar 

  • Devlin AM, Ling EH, Peerson JM, Fernando S, Clarke R, Smith AD, Halsted CH (2000) Glutamate carboxypeptidase II: A polymorphism associated with lower levels of serum folate and hyperhomocysteinemia. Hum Mol Genet 9:2837–2844

    PubMed  CAS  Google Scholar 

  • Devlin AM, Clarke R, Birks J, Evans JG, Halsted CH (2006) Interactions among polymorphisms in folate-metabolizing genes and serum total homocysteine concentrations in a healthy elderly population. Am J Clin Nutr 83:708–713

    PubMed  CAS  Google Scholar 

  • Duthie SJ, Narayanan S, Brand GM, Pirie L, Grant G (2002) Impact of folate deficiency on DNA stability. J Nutr 132:2444S–2449S

    PubMed  CAS  Google Scholar 

  • Duthie SJ, Narayanan S, Sharp L, Little J, Basten G, Powers H (2004) Folate, DNA stability and colo-rectal neoplasia. Proc Nutr Soc 63:571–578

    PubMed  CAS  Google Scholar 

  • Elmore CL, Wu X, Leclerc D, Watson ED, Bottiglieri T, Krupenko NI, Krupenko SA, Cross JC, Rozen R, Gravel RA, Matthews RG (2007) Metabolic derangement of methionine and folate metabolism in mice deficient in methionine synthase reductase. Mol Genet Metab 91:85–97

    PubMed  CAS  Google Scholar 

  • Erbe RW (1979) Genetic aspects of folate metabolism. Adv Hum Genet 9:293–354, 367–369

    PubMed  CAS  Google Scholar 

  • Esfahani ST, Cogger EA, Caudill MA (2003) Heterogeneity in the prevalence of methylenetetrahydrofolate reductase gene polymorphisms in women of different ethnic groups. J Am Diet Assoc 103:200–207

    PubMed  Google Scholar 

  • Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159

    PubMed  CAS  Google Scholar 

  • Fenech M (2001) The role of folic acid and Vitamin B12 in genomic stability of human cells. Mutat Res 475:57–67

    PubMed  CAS  Google Scholar 

  • Finkelstein JD (2000) Pathways and regulation of homocysteine metabolism in mammals. Semin Thromb Hemost 26:219–225

    PubMed  CAS  Google Scholar 

  • Finkelstein JD (2007) Metabolic regulatory properties of S-adenosylmethionine and S-adenosylhomocysteine. Clin Chem Lab Med 45:1694–1699

    PubMed  CAS  Google Scholar 

  • Finnell RH, Shaw GM, Lammer EJ, Rosenquist TH (2008) Gene-nutrient interactions: Importance of folic acid and vitamin B12 during early embryogenesis. Food Nutr Bull 29, S86–S98; discussion S99–S100

    PubMed  Google Scholar 

  • Fodinger M, Dierkes J, Skoupy S, Rohrer C, Hagen W, Puttinger H, Hauser AC, Vychytil A, Sunder-Plassmann G (2003) Effect of glutamate carboxypeptidase II and reduced folate carrier polymorphisms on folate and total homocysteine concentrations in dialysis patients. J Am Soc Nephrol 14:1314–1319

    PubMed  Google Scholar 

  • Fowler B, Whitehouse C, Wenzel F, Wraith JE (1997) Methionine and serine formation in control and mutant human cultured fibroblasts: Evidence for methyl trapping and characterization of remethylation defects. Pediatr Res 41:145–151

    PubMed  CAS  Google Scholar 

  • Fredriksen A, Meyer K, Ueland PM, Vollset SE, Grotmol T, Schneede J (2007) Large-scale population-based metabolic phenotyping of thirteen genetic polymorphisms related to one-carbon metabolism. Hum Mutat 28:856–865

    PubMed  CAS  Google Scholar 

  • Friso S, Choi SW (2002) Gene-nutrient interactions and DNA methylation. J Nutr 132:2382S–2387S

    PubMed  CAS  Google Scholar 

  • Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJ, den Heijer M, Kluijtmans LA, van den Heuvel LP, et al (1995) A candidate genetic risk factor for vascular disease: A common mutation in methylenetetrahydrofolate reductase. Nat Genet 10:111–113

    PubMed  CAS  Google Scholar 

  • Goyette P, Sumner JS, Milos R, Duncan AM, Rosenblatt DS, Matthews RG, Rozen R (1994) Human methylenetetrahydrofolate reductase: Isolation of cDNA, mapping and mutation identification. Nat Genet 7:195–200

    PubMed  CAS  Google Scholar 

  • Goyette P, Christensen B, Rosenblatt DS, Rozen R (1996) Severe and mild mutations in cis for the methylenetetrahydrofolate reductase (MTHFR) gene, and description of five novel mutations in MTHFR. Am J Hum Genet 59:1268–1275

    PubMed  CAS  Google Scholar 

  • Gregory JF (1995) The bioavailability of folate. In: Bailey LB (ed) Folate in health and disease. Marcel Dekker, New York, pp 195–235

    Google Scholar 

  • Gueant-Rodriguez RM, Gueant JL, Debard R, Thirion S, Hong LX, Bronowicki JP, Namour F, Chabi NW, Sanni A, Anello G, Bosco P, Romano C, Amouzou E, Arrieta HR, Sanchez BE, Romano A, Herbeth B, Guilland JC, Mutchinick OM (2006) Prevalence of methylenetetrahydrofolate reductase 677T and 1298C alleles and folate status: a comparative study in Mexican, West African, and European populations. Am J Clin Nutr 83:701–707

    PubMed  CAS  Google Scholar 

  • Guenther BD, Sheppard CA, Tran P, Rozen R, Matthews RG, Ludwig ML (1999) The structure and properties of methylenetetrahydrofolate reductase from Escherichia coli suggest how folate ameliorates human hyperhomocysteinemia. Nat Struct Biol 6:359–365

    PubMed  CAS  Google Scholar 

  • Halsted CH, Ling EH, Luthi-Carter R, Villanueva JA, Gardner JM, Coyle JT (1998) Folylpoly-gamma-glutamate carboxypeptidase from pig jejunum. Molecular characterization and relation to glutamate carboxypeptidase II. J Biol Chem 273:20417–20424

    PubMed  CAS  Google Scholar 

  • Halsted CH, Wong DH, Peerson JM, Warden CH, Refsum H, Smith AD, Nygard OK, Ueland PM, Vollset SE, Tell GS (2007) Relations of glutamate carboxypeptidase II (GCPII) polymorphisms to folate and homocysteine concentrations and to scores of cognition, anxiety, and depression in a homogeneous Norwegian population: The Hordaland Homocysteine Study. Am J Clin Nutr 86:514–521

    PubMed  CAS  Google Scholar 

  • Hamid A, Wani NA, Kaur J (2009) New perspectives on folate transport in relation to alcoholism-induced folate malabsorption – association with epigenome stability and cancer development. FEBS J 276:2175–2191

    PubMed  CAS  Google Scholar 

  • Hannon-Fletcher MP, Armstrong NC, Scott JM, Pentieva K, Bradbury I, Ward M, Strain JJ, Dunn AA, Molloy AM, Kerr MA, McNulty H (2004) Determining bioavailability of food folates in a controlled intervention study. Am J Clin Nutr 80:911–918

    PubMed  CAS  Google Scholar 

  • Harmon DL, Woodside JV, Yarnell JW, McMaster D, Young IS, McCrum EE, Gey KF, Whitehead AS, Evans AE (1996) The common ‘thermolabile’ variant of methylene tetrahydrofolate reductase is a major determinant of mild hyperhomocysteinaemia. QJM 89:571–577

    PubMed  CAS  Google Scholar 

  • Heil SG, Van der Put NM, Waas ET, den Heijer M, Trijbels FJ, Blom HJ (2001) Is mutated serine hydroxymethyltransferase (SHMT) involved in the etiology of neural tube defects? Mol Genet Metab 73:164–172

    PubMed  CAS  Google Scholar 

  • Herbig K, Chiang EP, Lee LR, Hills J, Shane B, Stover PJ (2002) Cytoplasmic serine hydroxymethyltransferase mediates competition between folate-dependent deoxyribonucleotide and S-adenosylmethionine biosyntheses. J Biol Chem 277:38381–38389

    PubMed  CAS  Google Scholar 

  • Herrmann W, Knapp JP (2002) Hyperhomocysteinemia: A new risk factor for degenerative diseases. Clin Lab 48:471–481

    PubMed  CAS  Google Scholar 

  • Holm PI, Hustad S, Ueland PM, Vollset SE, Grotmol T, Schneede J (2007) Modulation of the homocysteine-betaine relationship by methylenetetrahydrofolate reductase 677 C→t genotypes and B-vitamin status in a large-scale epidemiological study. J Clin Endocrinol Metab 92:1535–1541

    PubMed  CAS  Google Scholar 

  • Hustad S, Midttun O, Schneede J, Vollset SE, Grotmol T, Ueland PM (2007) The methylenetetrahydrofolate reductase 677C→T polymorphism as a modulator of a B vitamin network with major effects on homocysteine metabolism. Am J Hum Genet 80:846–855

    PubMed  CAS  Google Scholar 

  • Jacob RA, Gretz DM, Taylor PC, James SJ, Pogribny IP, Miller BJ, Henning SM, Swendseid ME (1998) Moderate folate depletion increases plasma homocysteine and decreases lymphocyte DNA methylation in postmenopausal women. J Nutr 128:1204–1212

    PubMed  CAS  Google Scholar 

  • Jacques PF, Kalmbach R, Bagley PJ, Russo GT, Rogers G, Wilson PW, Rosenberg IH, Selhub J (2002) The relationship between riboflavin and plasma total homocysteine in the Framingham Offspring cohort is influenced by folate status and the C677T transition in the methylenetetrahydrofolate reductase gene. J Nutr 132:283–288

    PubMed  CAS  Google Scholar 

  • Jang H, Mason JB, Choi SW (2005) Genetic and epigenetic interactions between folate and aging in carcinogenesis. J Nutr 135:2967S–2971S

    PubMed  CAS  Google Scholar 

  • Kalmbach RD, Choumenkovitch SF, Troen AP, Jacques PF, D’Agostino R, Selhub J (2008) A 19-base pair deletion polymorphism in dihydrofolate reductase is associated with increased unmetabolized folic acid in plasma and decreased red blood cell folate. J Nutr 138:2323–2327

    PubMed  CAS  Google Scholar 

  • Kang SS, Wong PW, Zhou JM, Sora J, Lessick M, Ruggie N, Grcevich G (1988a) Thermolabile methylenetetrahydrofolate reductase in patients with coronary artery disease. Metabolism 37:611–613

    PubMed  CAS  Google Scholar 

  • Kang SS, Zhou J, Wong PW, Kowalisyn J, Strokosch G (1988b) Intermediate homocysteinemia: A thermolabile variant of methylenetetrahydrofolate reductase. Am J Hum Genet 43:414–421

    PubMed  CAS  Google Scholar 

  • Kirke PN, Mills JL, Molloy AM, Brody LC, O’Leary VB, Daly L, Murray S, Conley M, Mayne PD, Smith O, Scott JM (2004) Impact of the MTHFR C677T polymorphism on risk of neural tube defects: Case-control study. BMJ 328:1535–1536

    PubMed  CAS  Google Scholar 

  • Klerk M, Verhoef P, Clarke R, Blom HJ, Kok FJ, Schouten EG (2002) MTHFR 677C→T polymorphism and risk of coronary heart disease: A meta-analysis. JAMA 288:2023–2031

    PubMed  CAS  Google Scholar 

  • Klerk M, Lievers KJ, Kluijtmans LA, Blom HJ, den Heijer M, Schouten EG, Kok FJ, Verhoef P (2003) The (2756)A>G variant in the gene encoding methionine synthase: Its relation with plasma homocysteine levels and risk of coronary heart disease in a Dutch case-control study. Thromb Res 110:87–91

    PubMed  CAS  Google Scholar 

  • Kluijtmans LA, Young IS, Boreham CA, Murray L, McMaster D, McNulty H, Strain JJ, McPartlin J, Scott JM, Whitehead AS (2003) Genetic and nutritional factors contributing to hyperhomocysteinemia in young adults. Blood 101:2483–2488

    PubMed  CAS  Google Scholar 

  • Kotb M, Kredich NM (1990) Regulation of human lymphocyte S-adenosylmethionine synthetase by product inhibition. Biochim Biophys Acta 1039:253–260

    PubMed  CAS  Google Scholar 

  • Kraus JP (1998) Biochemistry and molecular genetics of cystathionine beta-synthase deficiency. Eur J Pediatr 157(Suppl 2):S50–S53

    PubMed  CAS  Google Scholar 

  • Kutzbach C, Stokstad EL (1971) Mammalian methylenetetrahydrofolate reductase. Partial purification, properties, and inhibition by S-adenosylmethionine. Biochim Biophys Acta 250:459–477

    PubMed  CAS  Google Scholar 

  • Lathrop Stern L, Shane B, Bagley PJ, Nadeau M, Shih V, Selhub J (2003) Combined marginal folate and riboflavin status affect homocysteine methylation in cultured immortalized lymphocytes from persons homozygous for the MTHFR C677T mutation. J Nutr 133:2716–2720

    PubMed  Google Scholar 

  • Leclerc D, Campeau E, Goyette P, Adjalla CE, Christensen B, Ross M, Eydoux P, Rosenblatt DS, Rozen R, Gravel RA (1996) Human methionine synthase: cDNA cloning and identification of mutations in patients of the cblG complementation group of folate/cobalamin disorders. Hum Mol Genet 5:1867–1874

    PubMed  CAS  Google Scholar 

  • Lee BM, Mahadevan LC (2009) Stability of histone modifications across mammalian genomes: Implications for ‘epigenetic’ marking. J Cell Biochem 108:22–34

    PubMed  CAS  Google Scholar 

  • LeGros L, Halim AB, Chamberlin ME, Geller A, Kotb M (2001) Regulation of the human MAT2B gene encoding the regulatory beta subunit of methionine adenosyltransferase, MAT II. J Biol Chem 276:24918–24924

    PubMed  CAS  Google Scholar 

  • Li D, Karp N, Wu Q, Wang XL, Melnyk S, James SJ, Rozen R (2008) Mefolinate (5-methyltetrahydrofolate), but not folic acid, decreases mortality in an animal model of severe methylenetetrahydrofolate reductase deficiency. J Inherit Metab Dis 31:403–411

    PubMed  Google Scholar 

  • Lievers KJ, Kluijtmans LA, Boers GH, Verhoef P, den Heijer M, Trijbels FJ, Blom HJ (2002) Influence of a glutamate carboxypeptidase II (GCPII) polymorphism ((1561)C→T) on plasma homocysteine, folate and vitamin B(12) levels and its relationship to cardiovascular disease risk. Atherosclerosis 164:269–273

    PubMed  CAS  Google Scholar 

  • Lillycrop KA, Phillips ES, Torrens C, Hanson MA, Jackson AA, Burdge GC (2008) Feeding pregnant rats a protein-restricted diet persistently alters the methylation of specific cytosines in the hepatic PPAR alpha promoter of the offspring. Br J Nutr 100:278–282

    PubMed  CAS  Google Scholar 

  • Lim U, Peng K, Shane B, Stover PJ, Litonjua AA, Weiss ST, Gaziano JM, Strawderman RL, Raiszadeh F, Selhub J, Tucker KL, Cassano PA (2005) Polymorphisms in cytoplasmic serine hydroxymethyltransferase and methylenetetrahydrofolate reductase affect the risk of cardiovascular disease in men. J Nutr 135:1989–1994

    PubMed  CAS  Google Scholar 

  • Lindenbaum J, Allen RH (1995) Clinical spectrum and diagnosis of folate deficiency. In: Bailey LB (ed) Folate in health and disease. Marcel Dekker, New York, pp 43–73

    Google Scholar 

  • Linnebank M, Janosik M, Kozich V, Pronicka E, Kubalska J, Sokolova J, Linnebank A, Schmidt E, Leyendecker C, Klockgether T, Kraus JP, Koch HG (2004) The cystathionine beta-synthase (CBS) mutation c.1224–2A>C in Central Europe: Vitamin B6 nonresponsiveness and a common ancestral haplotype. Hum Mutat 24:352–353

    PubMed  Google Scholar 

  • Low PS, Antony AC (2004) Folate receptor-targeted drugs for cancer and inflammatory diseases. Adv Drug Deliv Rev 56:1055–1058

    PubMed  CAS  Google Scholar 

  • Ma J, Stampfer MJ, Giovannucci E, Artigas C, Hunter DJ, Fuchs C, Willett WC, Selhub J, Hennekens CH, Rozen R (1997) Methylenetetrahydrofolate reductase polymorphism, dietary interactions, and risk of colorectal cancer. Cancer Res 57:1098–1102

    PubMed  CAS  Google Scholar 

  • Ma DW, Finnell RH, Davidson LA, Callaway ES, Spiegelstein O, Piedrahita JA, Salbaum JM, Kappen C, Weeks BR, James J, Bozinov D, Lupton JR, Chapkin RS (2005) Folate transport gene inactivation in mice increases sensitivity to colon carcinogenesis. Cancer Res 65:887–897

    PubMed  CAS  Google Scholar 

  • MacFarlane AJ, Perry CA, Girnary HH, Gao D, Allen RH, Stabler SP, Shane B, Stover PJ (2009) Mthfd1 is an essential gene in mice and alters biomarkers of impaired one-carbon metabolism. J Biol Chem 284:1533–1539

    PubMed  CAS  Google Scholar 

  • Mangoni AA, Jackson SH (2002) Homocysteine and cardiovascular disease: Current evidence and future prospects. Am J Med 112:556–565

    PubMed  CAS  Google Scholar 

  • Mason JB (2003) Biomarkers of nutrient exposure and status in one-carbon (methyl) metabolism. J Nutr 133(Suppl 3):941S–947S

    PubMed  CAS  Google Scholar 

  • Matherly LH, Goldman DI (2003) Membrane transport of folates. Vitam Horm 66:403–456

    PubMed  CAS  Google Scholar 

  • Mathers JC, McKay JA (2009) Epigenetics – potential contribution to fetal programming. Adv Exp Med Biol 646:119–123

    PubMed  Google Scholar 

  • Matthews RG, Vanoni MA, Hainfeld JF, Wall J (1984) Methylenetetrahydrofolate reductase. Evidence for spatially distinct subunit domains obtained by scanning transmission electron microscopy and limited proteolysis. J Biol Chem 259:11647–11650

    PubMed  CAS  Google Scholar 

  • McKeever M, Molloy A, Weir DG, Young PB, Kennedy DG, Kennedy S, Scott JM (1995) An abnormal methylation ratio induces hypomethylation in vitro in the brain of pig and man, but not in rat. Clin Sci (Lond) 88:73–79

    CAS  Google Scholar 

  • McKillop DJ, McNulty H, Scott JM, McPartlin JM, Strain JJ, Bradbury I, Girvan J, Hoey L, McCreedy R, Alexander J, Patterson BK, Hannon-Fletcher M, Pentieva K (2006) The rate of intestinal absorption of natural food folates is not related to the extent of folate conjugation. Am J Clin Nutr 84:167–173

    PubMed  CAS  Google Scholar 

  • McNulty H, Pentieva K (2004) Folate bioavailability. Proc Nutr Soc 63:529–536

    PubMed  CAS  Google Scholar 

  • McNulty H, McKinley MC, Wilson B, McPartlin J, Strain JJ, Weir DG, Scott JM (2002) Impaired functioning of thermolabile methylenetetrahydrofolate reductase is dependent on riboflavin status: Implications for riboflavin requirements. Am J Clin Nutr 76:436–441

    PubMed  CAS  Google Scholar 

  • McNulty H, Dowey le RC, Strain JJ, Dunne A, Ward M, Molloy AM, McAnena LB, Hughes JP, Hannon-Fletcher M, Scott JM (2006) Riboflavin lowers homocysteine in individuals homozygous for the MTHFR 677C→T polymorphism. Circulation 113:74–80

    PubMed  CAS  Google Scholar 

  • Melse-Boonstra A, Holm PI, Ueland PM, Olthof M, Clarke R, Verhoef P (2005) Betaine concentration as a determinant of fasting total homocysteine concentrations and the effect of folic acid supplementation on betaine concentrations. Am J Clin Nutr 81:1378–1382

    PubMed  CAS  Google Scholar 

  • Meyer K, Fredriksen A, Ueland PM (2004) High-level multiplex genotyping of polymorphisms involved in folate or homocysteine metabolism by matrix-assisted laser desorption/ionization mass spectrometry. Clin Chem 50:391–402

    PubMed  CAS  Google Scholar 

  • Miles EW, Kraus JP (2004) Cystathionine beta-synthase: Structure, function, regulation, and location of homocystinuria-causing mutations. J Biol Chem 279:29871–29874

    PubMed  CAS  Google Scholar 

  • Mills JL, Molloy AM, Parle-McDermott A, Troendle JF, Brody LC, Conley MR, Cox C, Pangilinan F, Orr DJ, Earley M, McKiernan E, Lynn EC, Doyle A, Scott JM, Kirke PN (2008) Folate-related gene polymorphisms as risk factors for cleft lip and cleft palate. Birth Defects Res A Clin Mol Teratol 82:636–643

    PubMed  CAS  Google Scholar 

  • Min SH, Oh SY, Karp GI, Poncz M, Zhao R, Goldman ID (2008) The clinical course and genetic defect in the PCFT gene in a 27-year-old woman with hereditary folate malabsorption. J Pediatr 153:435–437

    PubMed  CAS  Google Scholar 

  • Mitchell LE, Adzick NS, Melchionne J, Pasquariello PS, Sutton LN, Whitehead AS (2004) Spina bifida. Lancet 364:1885–1895

    PubMed  Google Scholar 

  • Molloy AM (2002) Folate bioavailability and health. Int J Vitam Nutr Res 72:46–52

    PubMed  CAS  Google Scholar 

  • Molloy AM (2004) Folate and homocysteine interrelationships including genetics of the relevant enzymes. Curr Opin Lipidol 15:49–57

    PubMed  CAS  Google Scholar 

  • Molloy AM, Weir DG, Kennedy G, Kennedy S, Scott JM (1990) A new high performance liquid chromatographic method for the simultaneous measurement of S-adenosylmethionine and S-adenosylhomocysteine. Concentrations in pig tissues after inactivation of methionine synthase by nitrous oxide. Biomed Chromatogr 4:257–260

    PubMed  CAS  Google Scholar 

  • Molloy AM, Orsi B, Kennedy DG, Kennedy S, Weir DG, Scott JM (1992) The relationship between the activity of methionine synthase and the ratio of S-adenosylmethionine to S-adenosylhomocysteine in the brain and other tissues of the pig. Biochem Pharmacol 44:1349–1355

    PubMed  CAS  Google Scholar 

  • Molloy AM, Daly S, Mills JL, Kirke PN, Whitehead AS, Ramsbottom D, Conley MR, Weir DG, Scott JM (1997) Thermolabile variant of 5,10-methylenetetrahydrofolate reductase associated with low red-cell folates: Implications for folate intake recommendations. Lancet 349:1591–1593

    PubMed  CAS  Google Scholar 

  • Molloy AM, Kirke PN, Brody LC, Scott JM, Mills JL (2008) Effects of folate and vitamin B12 deficiencies during pregnancy on fetal, infant, and child development. Food Nutr Bull 29:S101–S111; discussion S112–S115

    PubMed  Google Scholar 

  • Molloy AM, Brody LC, Mills JL, Scott JM, Kirke PN (2009) The search for genetic polymorphisms in the homocysteine/folate pathway that contribute to the etiology of human neural tube defects. Birth Defects Res A Clin Mol Teratol 85:285–294

    PubMed  CAS  Google Scholar 

  • Morin I, Devlin AM, Leclerc D, Sabbaghian N, Halsted CH, Finnell R, Rozen R (2003) Evaluation of genetic variants in the reduced folate carrier and in glutamate carboxypeptidase II for spina bifida risk. Mol Genet Metab 79:197–200

    PubMed  CAS  Google Scholar 

  • MRC (1991) Prevention of neural tube defects: Results of the Medical Research Council Vitamin Study. MRC Vitamin Study Research Group. Lancet 338:131–137

    Google Scholar 

  • Mutchinick OM, Lopez MA, Luna L, Waxman J, Babinsky VE (1999) High prevalence of the thermolabile methylenetetrahydrofolate reductase variant in Mexico: A country with a very high prevalence of neural tube defects. Mol Genet Metab 68:461–467

    PubMed  CAS  Google Scholar 

  • Nurk E, Tell GS, Refsum H, Ueland PM, Vollset SE (2004) Associations between maternal methylenetetrahydrofolate reductase polymorphisms and adverse outcomes of pregnancy: The Hordaland Homocysteine Study. Am J Med 117:26–31

    PubMed  CAS  Google Scholar 

  • O’Leary VB, Mills JL, Kirke PN, Parle-McDermott A, Swanson DA, Weiler A, Pangilinan F, Conley M, Molloy AM, Lynch M, Cox C, Scott JM, Brody LC (2003) Analysis of the human folate receptor beta gene for an association with neural tube defects. Mol Genet Metab 79:129–133

    PubMed  Google Scholar 

  • O’Leary VB, Pangilinan F, Cox C, Parle-McDermott A, Conley M, Molloy AM, Kirke PN, Mills JL, Brody LC, Scott JM (2006) Reduced folate carrier polymorphisms and neural tube defect risk. Mol Genet Metab 87:364–369

    PubMed  Google Scholar 

  • Oppenheim EW, Adelman C, Liu X, Stover PJ (2001) Heavy chain ferritin enhances serine hydroxymethyltransferase expression and de novo thymidine biosynthesis. J Biol Chem 276:19855–19861

    PubMed  CAS  Google Scholar 

  • Parle-McDermott A, Mills JL, Kirke PN, O’Leary VB, Swanson DA, Pangilinan F, Conley M, Molloy AM, Cox C, Scott JM, Brody LC (2003) Analysis of the MTHFR (1298)A→C and 677C→T polymorphisms as risk factors for neural tube defects. J Hum Genet 48:190–193

    PubMed  Google Scholar 

  • Parle-McDermott A, Mills JL, Kirke PN, Cox C, Signore CC, Kirke S, Molloy AM, O’Leary VB, Pangilinan FJ, O’Herlihy C, Brody LC, Scott JM (2005a) MTHFD1 R653Q polymorphism is a maternal genetic risk factor for severe abruptio placentae. Am J Med Genet A 132:365–368

    PubMed  Google Scholar 

  • Parle-McDermott A, Pangilinan F, Mills JL, Signore CC, Molloy AM, Cotter A, Conley M, Cox C, Kirke PN, Scott JM, Brody LC (2005b) A polymorphism in the MTHFD1 gene increases a mother’s risk of having an unexplained second trimester pregnancy loss. Mol Hum Reprod 11:477–480

    PubMed  CAS  Google Scholar 

  • Parle-McDermott A, Mills JL, Molloy AM, Carroll N, Kirke PN, Cox C, Conley MR, Pangilinan FJ, Brody LC, Scott JM (2006) The MTHFR (1298)CC and 677TT genotypes have opposite associations with red cell folate levels. Mol Genet Metab 88:290–294

    PubMed  CAS  Google Scholar 

  • Parle-McDermott A, Pangilinan F, Mills JL, Kirke PN, Gibney ER, Troendle J, O’Leary VB, Molloy AM, Conley M, Scott JM, Brody LC (2007) The 19-bp deletion polymorphism in intron-1 of dihydrofolate reductase (DHFR) may decrease rather than increase risk for spina bifida in the Irish population. Am J Med Genet A 143A:1174–1180

    PubMed  CAS  Google Scholar 

  • Pejchal R, Campbell E, Guenther BD, Lennon BW, Matthews RG, Ludwig ML (2006) Structural perturbations in the Ala→Val polymorphism of methylenetetrahydrofolate reductase: how binding of folates may protect against inactivation. Biochemistry 45:4808–4818

    PubMed  CAS  Google Scholar 

  • Pepe G, Camacho Vanegas O, Giusti B, Brunelli T, Marcucci R, Attanasio M, Rickards O, De Stefano GF, Prisco D, Gensini GF, Abbate R (1998) Heterogeneity in world distribution of the thermolabile C677T mutation in 5,10-methylenetetrahydrofolate reductase. Am J Hum Genet 63:917–920

    PubMed  CAS  Google Scholar 

  • Perez Mato I, Sanchez del Pino MM, Chamberlin ME, Mudd SH, Mato JM, Corrales FJ (2001) Biochemical basis for the dominant inheritance of hypermethioninemia associated with the R264H mutation of the MAT1A gene. A monomeric methionine adenosyltransferase with tripolyphosphatase activity. J Biol Chem 276:13803–13809

    PubMed  CAS  Google Scholar 

  • Piedrahita JA, Oetama B, Bennett GD, van Waes J, Kamen BA, Richardson J, Lacey SW, Anderson RG, Finnell RH (1999) Mice lacking the folic acid-binding protein Folbp1 are defective in early embryonic development. Nat Genet 23:228–232

    PubMed  CAS  Google Scholar 

  • Qiu A, Jansen M, Sakaris A, Min SH, Chattopadhyay S, Tsai E, Sandoval C, Zhao R, Akabas MH, Goldman ID (2006) Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell 127:917–928

    PubMed  CAS  Google Scholar 

  • Rampersaud GC, Kauwell GP, Bailey LB (2003) Folate: A key to optimizing health and reducing disease risk in the elderly. J Am Coll Nutr 22:1–8

    PubMed  CAS  Google Scholar 

  • Ravaglia G, Forti P, Maioli F, Martelli M, Servadei L, Brunetti N, Porcellini E, Licastro F (2005) Homocysteine and folate as risk factors for dementia and Alzheimer disease. Am J Clin Nutr 82:636–643

    PubMed  CAS  Google Scholar 

  • Relton CL, Wilding CS, Pearce MS, Laffling AJ, Jonas PA, Lynch SA, Tawn EJ, Burn J (2004) Gene-gene interaction in folate-related genes and risk of neural tube defects in a UK population. J Med Genet 41:256–260

    PubMed  CAS  Google Scholar 

  • Robien K, Ulrich CM (2003) 5,10-Methylenetetrahydrofolate reductase polymorphisms and leukemia risk: A HuGE minireview. Am J Epidemiol 157:571–582

    PubMed  Google Scholar 

  • Rosenblatt DS (1995) Inherited disorders of folate transport and metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 3111–3128

    Google Scholar 

  • Ryan BM, Molloy AM, McManus R, Arfin Q, Kelleher D, Scott JM, Weir DG (2001) The methylenetetrahydrofolate reductase (MTHFR) gene in colorectal cancer: role in tumor development and significance of allelic loss in tumor progression. Int J Gastrointest Cancer 30:105–111

    PubMed  CAS  Google Scholar 

  • Schwab U, Torronen A, Meririnne E, Saarinen M, Alfthan G, Aro A, Uusitupa M (2006) Orally administered betaine has an acute and dose-dependent effect on serum betaine and plasma homocysteine concentrations in healthy humans. J Nutr 136:34–38

    PubMed  CAS  Google Scholar 

  • Schwahn BC, Wang XL, Mikael LG, Wu Q, Cohn J, Jiang H, Maclean KN, Rozen R (2007) Betaine supplementation improves the atherogenic risk factor profile in a transgenic mouse model of hyperhomocysteinemia. Atherosclerosis 195:e100–e107

    PubMed  CAS  Google Scholar 

  • Scott JM, Weir DG (1998) Folic acid, homocysteine and one-carbon metabolism: a review of the essential biochemistry. J Cardiovasc Risk 5:223–27

    PubMed  CAS  Google Scholar 

  • Selhub J (2002) Folate, vitamin B12 and vitamin B6 and one carbon metabolism. J Nutr Health Aging 6:39–42

    PubMed  CAS  Google Scholar 

  • Shane B (1989) Folylpolyglutamate synthesis and role in the regulation of one-carbon metabolism. Vitam Horm 45:263–335

    PubMed  CAS  Google Scholar 

  • Sharp L, Little J (2004) Polymorphisms in genes involved in folate metabolism and colorectal neoplasia: a HuGE review. Am J Epidemiol 159:423–443

    PubMed  Google Scholar 

  • Shaw GM, Lu W, Zhu H, Yang W, Briggs FB, Carmichael SL, Barcellos LF, Lammer EJ, Finnell RH (2009) 118 SNPs of folate-related genes and risks of spina bifida and conotruncal heart defects. BMC Med Genet 10:49

    PubMed  Google Scholar 

  • Shelnutt KP, Kauwell GP, Gregory JF 3rd, Maneval DR, Quinlivan EP, Theriaque DW, Henderson GN, Bailey LB (2004) Methylenetetrahydrofolate reductase 677C→T polymorphism affects DNA methylation in response to controlled folate intake in young women. J Nutr Biochem 15:554–560

    PubMed  CAS  Google Scholar 

  • Shields DC, Kirke PN, Mills JL, Ramsbottom D, Molloy AM, Burke H, Weir DG, Scott JM, Whitehead AS (1999) The “thermolabile” variant of methylenetetrahydrofolate reductase and neural tube defects: an evaluation of genetic risk and the relative importance of the genotypes of the embryo and the mother. Am J Hum Genet 64:1045–1055

    PubMed  CAS  Google Scholar 

  • Sibani S, Leclerc D, Weisberg IS, O’Ferrall E, Watkins D, Artigas C, Rosenblatt DS, Rozen R (2003) Characterization of mutations in severe methylenetetrahydrofolate reductase deficiency reveals an FAD-responsive mutation. Hum Mutat 21:509–520

    PubMed  CAS  Google Scholar 

  • Silaste ML, Rantala M, Sampi M, Alfthan G, Aro A, Kesaniemi YA (2001) Polymorphisms of key enzymes in homocysteine metabolism affect diet responsiveness of plasma homocysteine in healthy women. J Nutr 131:2643–2647

    PubMed  CAS  Google Scholar 

  • Sinclair KD, Allegrucci C, Singh R, Gardner DS, Sebastian S, Bispham J, Thurston A, Huntley JF, Rees WD, Maloney CA, Lea RG, Craigon J, McEvoy TG, Young LE (2007) DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc Natl Acad Sci USA 104:19351–19356

    PubMed  CAS  Google Scholar 

  • Skibola CF, Smith MT, Hubbard A, Shane B, Roberts AC, Law GR, Rollinson S, Roman E, Cartwright RA, Morgan GJ (2002) Polymorphisms in the thymidylate synthase and serine hydroxymethyltransferase genes and risk of adult acute lymphocytic leukemia. Blood 99:3786–3791

    PubMed  CAS  Google Scholar 

  • Smulders YM, Smith DE, Kok RM, Teerlink T, Gellekink H, Vaes WH, Stehouwer CD, Jakobs C (2007) Red blood cell folate vitamer distribution in healthy subjects is determined by the methylenetetrahydrofolate reductase C677T polymorphism and by the total folate status. J Nutr Biochem 18:693–699

    PubMed  CAS  Google Scholar 

  • Souto JC, Blanco-Vaca F, Soria JM, Buil A, Almasy L, Ordonez-Llanos J, Martin-Campos JM, Lathrop M, Stone W, Blangero J, Fontcuberta J (2005) A genomewide exploration suggests a new candidate gene at chromosome 11q23 as the major determinant of plasma homocysteine levels: results from the GAIT project. Am J Hum Genet 76:925–933

    PubMed  CAS  Google Scholar 

  • Spiegelstein O, Mitchell LE, Merriweather MY, Wicker NJ, Zhang Q, Lammer EJ, Finnell RH (2004) Embryonic development of folate binding protein-1 (Folbp1) knockout mice: effects of the chemical form, dose, and timing of maternal folate supplementation. Dev Dyn 231:221–231

    PubMed  CAS  Google Scholar 

  • Stegmann K, Ziegler A, Ngo ET, Kohlschmidt N, Schroter B, Ermert A, Koch MC (1999) Linkage disequilibrium of MTHFR genotypes 677C/T-(1298)A/C in the German population and association studies in probands with neural tube defects(NTD). Am J Med Genet 87:23–29

    PubMed  CAS  Google Scholar 

  • Stover PJ (2004) Physiology of folate and vitamin B12 in health and disease. Nutr Rev 62:S3–S12; discussion S13

    PubMed  Google Scholar 

  • Summers CM, Hammons AL, Mitchell LE, Woodside JV, Yarnell JW, Young IS, Evans A, Whitehead AS (2008) Influence of the cystathionine beta-synthase 844ins68 and methylenetetrahydrofolate reductase 677C>T polymorphisms on folate and homocysteine concentrations. Eur J Hum Genet 16:1010–1013

    PubMed  CAS  Google Scholar 

  • Sunden SL, Renduchintala MS, Park EI, Miklasz SD, Garrow TA (1997) Betaine-homocysteine methyltransferase expression in porcine and human tissues and chromosomal localization of the human gene. Arch Biochem Biophys 345:171–174

    PubMed  CAS  Google Scholar 

  • Surtees R, Leonard J, Austin S (1991) Association of demyelination with deficiency of cerebrospinal-fluid S-adenosylmethionine in inborn errors of methyl-transfer pathway. Lancet 338:1550–1554

    PubMed  CAS  Google Scholar 

  • Suzuki T, Matsuo K, Hirose K, Hiraki A, Kawase T, Watanabe M, Yamashita T, Iwata H, Tajima K (2008) One-carbon metabolism-related gene polymorphisms and risk of breast cancer. Carcinogenesis 29:356–362

    PubMed  CAS  Google Scholar 

  • Tanaka T, Scheet P, Giusti B, Bandinelli S, Piras MG, Usala G, Lai S, Mulas A, Corsi AM, Vestrini A, Sofi F, Gori AM, Abbate R, Guralnik J, Singleton A, Abecasis GR, Schlessinger D, Uda M, Ferrucci L (2009) Genome-wide association study of vitamin B6, vitamin B12, folate, and homocysteine blood concentrations. Am J Hum Genet 84:477–482

    PubMed  CAS  Google Scholar 

  • Tang LS, Finnell RH (2003) Neural and orofacial defects in Folp1 knockout mice [corrected]. Birth Defects Res A Clin Mol Teratol 67:209–218

    PubMed  CAS  Google Scholar 

  • Taparia S, Gelineau-van Waes J, Rosenquist TH, Finnell RH (2007) Importance of folate-homocysteine homeostasis during early embryonic development. Clin Chem Lab Med 45:1717–1727

    PubMed  CAS  Google Scholar 

  • Tsai MY, Bignell M, Schwichtenberg K, Hanson NQ (1996) High prevalence of a mutation in the cystathionine beta-synthase gene. Am J Hum Genet 59:1262–1267

    PubMed  CAS  Google Scholar 

  • Tsai MY, Welge BG, Hanson NQ, Bignell MK, Vessey J, Schwichtenberg K, Yang F, Bullemer FE, Rasmussen R, Graham KJ (1999a) Genetic causes of mild hyperhomocysteinemia in patients with premature occlusive coronary artery diseases. Atherosclerosis 143:163–170

    PubMed  CAS  Google Scholar 

  • Tsai MY, Yang F, Bignell M, Aras O, Hanson NQ (1999b) Relation between plasma homocysteine concentration, the 844ins68 variant of the cystathionine beta-synthase gene, and pyridoxal-5′-phosphate concentration. Mol Genet Metab 67:352–356

    PubMed  CAS  Google Scholar 

  • Ubagai T, Lei KJ, Huang S, Mudd SH, Levy HL, Chou JY (1995) Molecular mechanisms of an inborn error of methionine pathway. Methionine adenosyltransferase deficiency. J Clin Invest 96:1943–1947

    PubMed  CAS  Google Scholar 

  • Ueland PM, Refsum H, Beresford SA, Vollset SE (2000) The controversy over homocysteine and cardiovascular risk. Am J Clin Nutr 72:324–332

    PubMed  CAS  Google Scholar 

  • Ueland PM, Hustad S, Schneede J, Refsum H, Vollset SE (2001) Biological and clinical implications of the MTHFR C677T polymorphism. Trends Pharmacol Sci 22:195–201

    PubMed  CAS  Google Scholar 

  • Ueland PM, Holm PI, Hustad S (2005) Betaine: a key modulator of one-carbon metabolism and homocysteine status. Clin Chem Lab Med 43:1069–1075

    PubMed  CAS  Google Scholar 

  • Ulrich CM, Curtin K, Potter JD, Bigler J, Caan B, Slattery ML (2005) Polymorphisms in the reduced folate carrier, thymidylate synthase, or methionine synthase and risk of colon cancer. Cancer Epidemiol Biomarkers Prev 14:2509–2516

    PubMed  CAS  Google Scholar 

  • Ulvik A, Vollset SE, Hansen S, Gislefoss R, Jellum E, Ueland PM (2004) Colorectal cancer and the methylenetetrahydrofolate reductase 677C→T and methionine synthase (2756)A→G polymorphisms: A study of 2,168 case-control pairs from the JANUS cohort. Cancer Epidemiol Biomarkers Prev 13:2175–2180

    PubMed  CAS  Google Scholar 

  • Ulvik A, Ueland PM, Fredriksen A, Meyer K, Vollset SE, Hoff G, Schneede J (2007) Functional inference of the methylenetetrahydrofolate reductase 677C > T and (1298)A > C polymorphisms from a large-scale epidemiological study. Hum Genet 121:57–64

    PubMed  CAS  Google Scholar 

  • Vargas-Martinez C, Ordovas JM, Wilson PW and Selhub, J. (2002) The glutamate carboxypeptidase gene II (C>T) polymorphism does not affect folate status in the Framingham Offspring cohort. J Nutr 132:1176–1179

    PubMed  CAS  Google Scholar 

  • Vermeulen SH, van der Vleuten GM, de Graaf J, Hermus AR, Blom HJ, Stalenhoef AF, den Heijer M (2006) A genome-wide linkage scan for homocysteine levels suggests three regions of interest. J Thromb Haemost 4:1303–1307

    PubMed  CAS  Google Scholar 

  • Vieira AR, Murray JC, Trembath D, Orioli IM, Castilla EE, Cooper ME, Marazita ML, Lennon-Graham F, Speer M (2005) Studies of reduced folate carrier 1 (RFC1) A80G and 5,10-methylenetetrahydrofolate reductase (MTHFR) C677T polymorphisms with neural tube and orofacial cleft defects. Am J Med Genet A 135:220–223

    PubMed  Google Scholar 

  • Volcik KA, Shaw GM, Zhu H, Lammer EJ, Laurent C, Finnell RH (2003) Associations between polymorphisms within the thymidylate synthase gene and spina bifida. Birth Defects Res A Clin Mol Teratol 67:924–928

    PubMed  CAS  Google Scholar 

  • Vollset SE, Refsum H, Irgens LM, Emblem BM, Tverdal A, Gjessing HK, Monsen AL, Ueland PM (2000) Plasma total homocysteine, pregnancy complications, and adverse pregnancy outcomes: The Hordaland Homocysteine study. Am J Clin Nutr 71:962–968

    PubMed  CAS  Google Scholar 

  • Vyletal P, Sokolova J, Cooper DN, Kraus JP, Krawczak M, Pepe G, Rickards O, Koch HG, Linnebank M, Kluijtmans LA, Blom HJ, Boers GH, Gaustadnes M, Skovby F, Wilcken B, Wilcken DE, Andria G, Sebastio G, Naughten ER, Yap S, Ohura T, Pronicka E, Laszlo A, Kozich V (2007) Diversity of cystathionine beta-synthase haplotypes bearing the most common homocystinuria mutation c.833T>C: a possible role for gene conversion. Hum Mutat 28:255–264

    PubMed  CAS  Google Scholar 

  • Wald DS, Law M, Morris JK (2002) Homocysteine and cardiovascular disease: Evidence on causality from a meta-analysis. BMJ 325:1202

    PubMed  Google Scholar 

  • Walker LS (2007) Regulatory T cells: Folate receptor 4: a new handle on regulation and memory? Immunol Cell Biol 85:506–507

    PubMed  CAS  Google Scholar 

  • Wasson GR, McGlynn AP, McNulty H, O’Reilly SL, McKelvey-Martin VJ, McKerr G, Strain JJ, Scott J, Downes CS (2006) Global DNA and p53 region-specific hypomethylation in human colonic cells is induced by folate depletion and reversed by folate supplementation. J Nutr 136:2748–2753

    PubMed  CAS  Google Scholar 

  • Watkins D, Ru M, Hwang HY, Kim CD, Murray A, Philip NS, Kim W, Legakis H, Wai T, Hilton JF, Ge B, Dore C, Hosack A, Wilson A, Gravel RA, Shane B, Hudson TJ, Rosenblatt DS (2002) Hyperhomocysteinemia due to methionine synthase deficiency, cblG: structure of the MTR gene, genotype diversity, and recognition of a common mutation, P1173L. Am J Hum Genet 71:143–153

    PubMed  CAS  Google Scholar 

  • Weisberg IS, Park E, Ballman KV, Berger P, Nunn M, Suh DS, Breksa AP 3rd, Garrow TA, Rozen R (2003) Investigations of a common genetic variant in betaine-homocysteine methyltransferase (BHMT) in coronary artery disease. Atherosclerosis 167:205–214

    PubMed  CAS  Google Scholar 

  • Wilcken B, Bamforth F, Li Z, Zhu H, Ritvanen A, Renlund M, Stoll C, Alembik Y, Dott B, Czeizel AE, Gelman-Kohan Z, Scarano G, Bianca S, Ettore G, Tenconi R, Bellato S, Scala I, Mutchinick OM, Lopez MA, de Walle H, Hofstra R, Joutchenko L, Kavteladze L, Bermejo E, Martinez-Frias ML, Gallagher M, Erickson JD, Vollset SE, Mastroiacovo P, Andria G, Botto LD (2003) Geographical and ethnic variation of the 677C>T allele of 5,10 methylenetetrahydrofolate reductase (MTHFR): findings from over 7000 newborns from 16 areas world wide. J Med Genet 40:619–625

    PubMed  CAS  Google Scholar 

  • Wilson A, Leclerc D, Rosenblatt DS, Gravel RA (1999a) Molecular basis for methionine synthase reductase deficiency in patients belonging to the cblE complementation group of disorders in folate/cobalamin metabolism. Hum Mol Genet 8:2009–2016

    PubMed  CAS  Google Scholar 

  • Wilson A, Platt R, Wu Q, Leclerc D, Christensen B, Yang H, Gravel RA, Rozen R (1999b) A common variant in methionine synthase reductase combined with low cobalamin (vitamin B12) increases risk for spina bifida. Mol Genet Metab 67:317–323

    PubMed  CAS  Google Scholar 

  • Winkelmayer WC, Eberle C, Sunder-Plassmann G, Fodinger M (2003) Effects of the glutamate carboxypeptidase II (GCP2 (1561)C>T) and reduced folate carrier (RFC1 80G>A) allelic variants on folate and total homocysteine levels in kidney transplant patients. Kidney Int 63:2280–2285

    PubMed  CAS  Google Scholar 

  • Woeller CF, Anderson DD, Szebenyi DM, Stover PJ (2007) Evidence for small ubiquitin-like modifier-dependent nuclear import of the thymidylate biosynthesis pathway. J Biol Chem 282:17623–17631

    PubMed  CAS  Google Scholar 

  • Xu X, Chen J (2009) One-carbon metabolism and breast cancer: an epidemiological perspective. J Genet Genom 36:203–214

    CAS  Google Scholar 

  • Yamada K, Chen Z, Rozen R, Matthews RG (2001) Effects of common polymorphisms on the properties of recombinant human methylenetetrahydrofolate reductase. Proc Natl Acad Sci USA 98:14853–14858

    PubMed  CAS  Google Scholar 

  • Yamada K, Gravel RA, Toraya T, Matthews RG (2006) Human methionine synthase reductase is a molecular chaperone for human methionine synthase. Proc Natl Acad Sci USA 103:9476–9481

    PubMed  CAS  Google Scholar 

  • Yamaguchi T, Hirota K, Nagahama K, Ohkawa K, Takahashi T, Nomura T, Sakaguchi S (2007) Control of immune responses by antigen-specific regulatory T cells expressing the folate receptor. Immunity 27:145–159

    PubMed  CAS  Google Scholar 

  • Yang QH, Botto LD, Gallagher M, Friedman JM, Sanders CL, Koontz D, Nikolova S, Erickson JD, Steinberg K (2008) Prevalence and effects of gene-gene and gene-nutrient interactions on serum folate and serum total homocysteine concentrations in the United States: findings from the third National Health and Nutrition Examination Survey DNA Bank. Am J Clin Nutr 88:232–246

    PubMed  CAS  Google Scholar 

  • Yi P, Melnyk S, Pogribna M, Pogribny IP, Hine RJ, James SJ (2000) Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation. J Biol Chem 275:29318–29323

    PubMed  CAS  Google Scholar 

  • Zeisel SH (2009) Epigenetic mechanisms for nutrition determinants of later health outcomes. Am J Clin Nutr 89:1488S–1493S

    PubMed  CAS  Google Scholar 

  • Zhao R, Min SH, Qiu A, Sakaris A, Goldberg GL, Sandoval C, Malatack JJ, Rosenblatt DS, Goldman ID (2007) The spectrum of mutations in the PCFT gene, coding for an intestinal folate transporter, that are the basis for hereditary folate malabsorption. Blood 110:1147–1152

    PubMed  CAS  Google Scholar 

  • Zhao R, Matherly LH, Goldman ID (2009) Membrane transporters and folate homeostasis: intestinal absorption and transport into systemic compartments and tissues. Expert Rev Mol Med 11:e4

    PubMed  Google Scholar 

  • Zhu H, Curry S, Wen S, Wicker NJ, Shaw GM, Lammer EJ, Yang W, Jafarov T, Finnell RH (2005) Are the betaine-homocysteine methyltransferase (BHMT and BHMT2) genes risk factors for spina bifida and orofacial clefts? Am J Med Genet A 135:274–277

    PubMed  Google Scholar 

  • Zhu H, Wlodarczyk BJ, Scott M, Yu W, Merriweather M, Gelineau-van Waes J, Schwartz RJ, Finnell RH (2007) Cardiovascular abnormalities in Folr1 knockout mice and folate rescue. Birth Defects Res A Clin Mol Teratol 79:257–268

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne M. Molloy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Molloy, A.M. (2012). Genetic Aspects of Folate Metabolism. In: Stanger, O. (eds) Water Soluble Vitamins. Subcellular Biochemistry, vol 56. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2199-9_7

Download citation

Publish with us

Policies and ethics