Skip to main content

Biochemistry of B12-Cofactors in Human Metabolism

  • Chapter
  • First Online:
Water Soluble Vitamins

Part of the book series: Subcellular Biochemistry ((SCBI,volume 56))

Abstract

Vitamin B12, the “antipernicious anaemia factor”, is a crystallisable cobalt-complex, which belongs to a group of unique “complete” corrinoids, named cobalamins (Cbl). In humans, instead of the “vitamin”, two organometallic B12-forms are coenzymes in two metabolically important enzymes: Methyl-cobalamin, the cofactor of methionine synthase, and coenzyme B12 (adenosyl-cobalamin), the cofactor of methylmalonyl-CoA mutase. The cytoplasmatic methionine synthase catalyzes the transfer of a methyl group from N-methyl-tetrahydrofolate to homocysteine to yield methionine and to liberate tetrahydrofolate. In the mitochondrial methylmalonyl-CoA mutase a radical process transforms methylmalonyl-CoA (a remains e.g. from uneven numbered fatty acids) into succinyl-CoA, for further metabolic use. In addition, in the human mitochondria an adenosyl-transferase incorporates the organometallic group of coenzyme B12. In all these enzymes, the bound B12-derivatives engage (or are formed) in exceptional organometallic enzymatic reactions. This chapter recapitulates the physiological chemistry of vitamin B12, relevant in the context of the metabolic transformation of B12-derivatives into the relevant coenzyme forms and their use in B12-dependent enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ado:

5′-(deoxy)-adenosyl

AdoCbl:

5′-deoxy-5′-adenosyl-cobalamin (coenzyme B12, also named adenosyl-cobalamin)

Ado-ImCba:

5′-deoxy-5′-adenosyl-imidazolyl-cobamide

B12r:

cob(II)alamin

B12s:

cob(I)alamin

BDE:

(homolytic) bond dissociation energy

Cba:

cobamide

Cbl:

cobalamin (a DMB-cobamide)

CNCbl:

cyano-cobalamin (vitamin B12)

CN-ImCba:

cyano-imidazolyl-cobamide

DMB:

5,6-dimethylbenzimidazole

H2OCbl+ :

aquo-cobalamin (B12a)

HOCbl:

hydroxo-cobalamin

ImCba:

imidazolyl-cobamide

MeCbl:

methyl-cobalamin

Me-ImCba:

methyl-imidazolyl-cobamide

MetH:

methionine synthase (from E. coli)

MMCM:

methylmalonyl-CoA mutase (from Propionibacterium shermanii)

NHE:

normal hydrogen electrode

NMR:

nuclear magnetic resonance

SAM:

S-adenosyl-methionine (AdoMet)

UV/Vis:

ultraviolet/visible absorbance spectrum

References

  • Bandarian V, Ludwig ML, Matthews RG (2003) Factors modulating conformational equilibria in large modular proteins: a case study with cobalamin-dependent methionine synthase. Proc Natl Acad Sci USA 100:8156–8163

    Article  PubMed  CAS  Google Scholar 

  • Bandarian V, Pattridge KA, Lennon BW, Huddler DP, Matthews RG, Ludwig ML (2002) Domain alternation switches B12-dependent methionine synthase to the activation conformation. Nat Struct Biol 9:53–56

    Article  PubMed  CAS  Google Scholar 

  • Banerjee R (1997) The Yin-Yang of cobalamin biochemistry. Chem Biol 4:175–186

    Article  PubMed  CAS  Google Scholar 

  • Banerjee R (1998) Spectroscopic and molecular genetic characterization of the two mammalian B12-dependent enzymes. In: Kräutler B, Arigoni D, Golding BT (eds) Vitamin B12 and B12-proteins, Wiley-VCH, Weinheim, pp. 189–197

    Chapter  Google Scholar 

  • Banerjee R (ed) (1999) Chemistry and biochemistry of B12. Wiley, New York

    Google Scholar 

  • Banerjee R, Chowdhury S (1999) Methylmalonyl-CoA mutase. In: Banerjee R (ed) Chemistry and biochemistry of B12. Wiley, New York, pp. 707–730

    Google Scholar 

  • Banerjee R, Ragsdale SW (2003) The many faces of vitamin B12: catalysis by cobalamin-dependent enzymes. Annu Rev Biochem 72:209–247

    Article  PubMed  CAS  Google Scholar 

  • Battersby AR (1998) B12-biosynthesis in an aerobic organism: how the pathway was elicudated. In: Kräutler B, Arigoni D, Golding BT (eds) Vitamin B12 and B12-proteins. Wiley-VCH, Weinheim, pp. 47–61

    Chapter  Google Scholar 

  • Brooks AJ, Vlasie M, Banerjee R, Brunold TC (2004) Spectroscopic and computational studies on the adenosylcobalamin-dependent methylmalonyl-CoA mutase: evaluation of enzymatic contributions to Co–C bond activation in the Co3 + ground state. J Am Chem Soc 126:8167–8180

    Article  PubMed  CAS  Google Scholar 

  • Brown KL (1999) NMR Spectroscopy of B12. In: Banerjee R (ed) Chemistry and biochemistry of B12. Wiley, New York, pp. 197–237

    Google Scholar 

  • Brown KL (2005) Chemistry and enzymology of vitamin B12. Chem Rev 105:2075–2149

    Article  PubMed  CAS  Google Scholar 

  • Brown KL, Zou X, Banka RR, Perry CB, Marques HM (2004) Solution structure and thermolysis of Coβ-5′-deoxyadenosylimidazolylcobamide, a coenzyme B12 analogue with an imidazole axial nucleoside. Inorg Chem 43:8130–8142

    Article  PubMed  CAS  Google Scholar 

  • Buckel W, Golding BT (1996) Glutamate and 2-methyleneglutarate mutase: from microbial curiosities to paradigms for coenzyme B12-dependent enzymes. Chem Soc Rev 25:329

    Article  CAS  Google Scholar 

  • Buckel W, Golding BT (2006) Radical enzymes in anaerobes. Ann Rev Microbiol 60:27–49

    Article  CAS  Google Scholar 

  • Buckel W, Kratky C, Golding BT (2006) Stabilization of methylene radicals by Cob(II)alamin in coenzyme B12 dependent mutases. Chem Eur J 12:352–362

    Article  Google Scholar 

  • Chowdhury S, Banerjee R (2000a) Evidence for quantum mechanical tunneling in the coupled cobalt-carbon bond homolysis-substrate radical generation reaction catalyzed by methylmalonyl-CoA mutase. J Am Chem Soc 122:5417–5418

    Article  CAS  Google Scholar 

  • Chowdhury S, Banerjee R (2000b) Thermodynamic and kinetic characterization of Co–C bond homolysis catalyzed by coenzyme B12-dependent methylmalonyl-CoA mutase. Biochemistry 39:7998–8006

    Article  PubMed  CAS  Google Scholar 

  • Cole AG, Yoder LM, Shiang JJ, Anderson NA, Walker LA, Holl MMB, Sension RJ (2002) Time-resolved spectroscopic studies of B12 coenzymes: a comparison of the primary photolysis mechanism in methyl-, ethyl-, n-propyl-, and 5′-deoxyadenosylcobalamin. J Am Chem Soc 124:434–41

    Article  PubMed  CAS  Google Scholar 

  • Dolphin D (ed) (1982) B12, vols I and II. Wiley, New York

    Google Scholar 

  • Drennan CL, Dixon MM, Hoover DM, Jarrett JT, Goulding CW, Matthews RG, Ludwig ML (1998) Cobalamin-dependent methionine synthase from Escherichia coli: structure and reactivity. In: Kräutler B, Arigoni D, Golding BT (eds) Vitamin B12 and B12-proteins. Weinheim, Wiley-VCH, pp. 133–155

    Chapter  Google Scholar 

  • Drennan CL, Doukov TI, Ragsdale SW (2004) The metalloclusters of carbon monoxide dehydrogenase/acetyl-CoA synthase: a story in pictures. J Biol Inorg Chem 9:511–515

    Article  PubMed  CAS  Google Scholar 

  • Drennan CL, Huang S, Drummond JT, Matthews RG, Ludwig ML (1994) How a protein binds B12 – a 3.0 Å X-ray structure of B12-binding domains of methionine synthase. Science 266:1669–1674

    Article  PubMed  CAS  Google Scholar 

  • Drennan CL, Matthews RG, Ludwig ML (1994) Cobalamin-dependent methionine synthase – the structure of a methylcobalamin-binding fragment and implications for other B12-dependent enzymes. Curr Opin Struct Biol 4:919–929

    Article  PubMed  CAS  Google Scholar 

  • Ellenbogen L, Cooper BA (1984) Vitamin B12. In: Machlin LJ (ed) Handbook of vitamins, nutritional and clinical aspects. Food Science and Technology. Marcel Dekker, New York, pp. 491–536

    Google Scholar 

  • Endicott JF, Netzel TL (1979) Early events and transient chemistry in the photohomolysis of alkylcobalamins. J Am Chem Soc 101:4000–4002

    Article  CAS  Google Scholar 

  • Eschenmoser A (1988) Vitamin-B12 – Experiments concerning the origin of its molecular structure. Angew Chem Int Ed 27:5–39

    Article  Google Scholar 

  • Evans JC, Huddler DP, Hilgers MT, Romanchuk G, Matthews RG, Ludwig ML (2004) Structures of the N-terminal modules imply large domain motions during catalysis by methionine synthase. Proc Natl Acad Sci USA 101:3729–3736

    Article  PubMed  CAS  Google Scholar 

  • Evans PR, Mancia F (1998) Insights on the reaction mechanism of methylmalonyl-CoA mutase from the crystal structure. In: Kräutler B, Golding BT, Arigoni D (eds) Vitamin B12 and B12 proteins. Wiley-VCH, Weinheim, pp. 217–226

    Chapter  Google Scholar 

  • Fasching M, Schmidt W, Kräutler B, Stupperich E, Schmidt A, Kratky C (2000) Coα-(1H-imidazolyl)-Coβ-methylcob(III)amide: model for protein-bound corrinoid cofactors. Helv Chim Acta 83:2295–2316

    Article  CAS  Google Scholar 

  • Finke RG (1998) Coenzyme B12-based chemical precedent for Co–C bond homolysis and other key elementary step. In: Kräutler B, Arigoni D, Golding BT (eds) Vitamin B12 and B12-proteins. Wiley-VCH, Weinheim, pp. 383–402

    Chapter  Google Scholar 

  • Frey PA, Chang CH (1999) Aminomutases. In: Banerjee R (ed) Chemistry and biochemistry of B12. Wiley, New York, pp. 835–858

    Google Scholar 

  • Friedrich, W. (1988) Vitamins. Walter de Gruyter, Berlin

    Google Scholar 

  • Golding BT, Anderson RJ, Ashwell S, Edwards CH, Garnett I, Kroll F, Buckel W (1998) A mechanistic overview of B12 dependent processes. In: Kräutler B, Arigoni D, Golding BT (eds) Vitamin B12 and B12 proteins. Wiley-VCH, Weinheim, pp. 201–216

    Chapter  Google Scholar 

  • Gruber K, Kratky C (2002) Coenzyme B12 dependent glutamate mutase. Curr Opin Chem Biol 6:598–603

    Article  PubMed  CAS  Google Scholar 

  • Gschösser S, Hannak RB, Konrat R, Gruber K, Mikl C, Kratky C, Kräutler B (2005) Homocoenzyme B12 and bishomocoenzyme B12, covalent structural mimics for homolyzed, enzyme-bound coenzyme B12. Chem Eur J 11:81–93

    Article  Google Scholar 

  • Halpern J (1982) Chemistry and significance of vitamin B12 model systems. In: Dolphin D (ed) B12. Wiley, New York, pp. 501–541

    Google Scholar 

  • Halpern J (1985) Mechanisms of coenzyme B12-dependent rearrangements. Science 227:869–875

    Article  PubMed  CAS  Google Scholar 

  • Hay BP, Finke RG (1986) Thermolysis of the Co–C bond of adenosylcobalamin. 2. products, kinetics, and Co–C bond-dissociation energy in aqueous-solution. J Am Chem Soc 108:4820–4829

    Article  CAS  Google Scholar 

  • Hodgkin DC, Kamper J, Mackay M, Pickworth J, Trueblood KN, White JG (1956) Structure of Vitamin-B12. Nature 178:64–66

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin DC, Pickworth J, Robertson JH, Trueblood KN, Prosen RJ, White JG (1955) Crystal structure of the hexacarboxylic acid derived from B12 and the molecular structure of the vitamin. Nature 176:325–328

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann B, Oberhuber. M., Stupperich E, Bothe H, Buckel W, Konrat R, Kräutler B (2000) Native corrinoids from Clostridium cochlearium are adeninylcobamides: spectroscopic analysis and identification of pseudovitamin B12 and factor A. J Bacteriol 182:4773–4782

    Article  PubMed  CAS  Google Scholar 

  • Hogenkamp HPC, Bratt GT, Sun S (1985) Methyl transfer from methylcobalamin to thiols – a reinvestigation. Biochemistry 24:6428–6432

    Article  PubMed  CAS  Google Scholar 

  • Jarrett JT, Amaratunga M, Drennan CL, Scholten JD, Sands RH, Ludwig ML, Matthews RG (1996) Mutations in the B12-binding region of methionine synthase: how the protein controls methylcobalamin reactivity. Biochemistry 35:2464–2475

    Article  PubMed  CAS  Google Scholar 

  • Konrat R, Tollinger M, Kräutler B (1998) New NMR structural and dynamical probes of organometallic B12 derivatives. In: Kräutler B, Arigoni D, Golding BT (eds) Vitamin B12 and B12-proteins. Wiley-VCH, Weinheim, pp. 349–368

    Chapter  Google Scholar 

  • Kratky C, Kräutler B (1999) Molecular structure of B12 cofactors and other B12 derivatives. In: Banerjee R (ed) Chemistry and biochemistry of B12. Wiley, New York, pp. 6–41

    Google Scholar 

  • Kräutler B (1987) Thermodynamic trans-effects of the nucleotide base in the B12 coenzymes. Helv Chim Acta 70:1268–1278

    Article  Google Scholar 

  • Kräutler B (1998) B12 coenzymes, the central theme. In: Kräutler B, Arigoni D, Golding BT (eds) Vitamin B12 and B12 proteins. Wiley-VCH, Weinheim, pp. 3–43

    Chapter  Google Scholar 

  • Kräutler B (1999) Electrochemistry and organometallic electrochemical synthesis. In: Banerjee R (ed) Chemistry and biochemistry of B12. Wiley, New York, pp. 315–339

    Google Scholar 

  • Kräutler B, Arigoni D, Golding BT (eds) (1998) Vitamin B12 and B12-proteins. Wiley-VCH, Weinheim

    Google Scholar 

  • Kräutler B, Caderas C (1984) Complementary diastereoselective cobalt methylations of the Vitamin-B12 derivative cobester. Helv Chim Acta 67:1891–1896

    Article  Google Scholar 

  • Kräutler B, Dérer T, Liu PL, Mühlecker W, Puchberger M, Kratky C, Gruber K (1995) Oligomethylene-bridged vitamin-B12 dimers. Angew Chem Int Ed 34:84–86

    Article  Google Scholar 

  • Kräutler B, Fieber W, Ostermann S, Fasching M, Ongania KH, Gruber K, Kratky C, Mikl C, Siebert A, Diekert G (2003) The cofactor of tetrachloroethene reductive dehalogenase of Dehalospirillum multivorans is norpseudo-B12, a new type of a natural corrinoid. Helv Chim Acta 86:3698–36716

    Article  Google Scholar 

  • Kräutler B, Keller W, Kratky C (1989) Coenzyme B12-chemistry: the crystal and molecular structure of Cob(II)alamin. J Am Chem Soc 111:8936–8938

    Article  Google Scholar 

  • Kräutler B, Konrat R, Stupperich E, Färber G, Gruber K, Kratky C (1994) Direct evidence for the conformational deformation of the corrin ring by the nucleotide base in vitamin-B12 – synthesis and solution spectroscopic and crystal-structure analysis of Coβ-cyanoimidazolylcobamide. Inorg Chem 33:4128–4139

    Article  Google Scholar 

  • Kräutler B, Ostermann S (2003) Structure, reactions and functions of B12 and B12-proteins. In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook. Elsevier Science, Oxford, pp. 229–276

    Google Scholar 

  • Lenhert PG, Hodgkin DC (1961) Structure of 5,6-dimethylbenzimidazolylcobamide coenzyme. Nature 192:937

    Article  PubMed  CAS  Google Scholar 

  • Lexa D, Savéant JM (1983) The electrochemistry of vitamin-B12. Acc Chem Res 16:235–243

    Article  CAS  Google Scholar 

  • Licht SS, Booker S, Stubbe J (1999) Studies on the catalysis of carbon-cobalt bond homolysis by ribonucleoside triphosphate reductase: evidence for concerted carbon-cobalt bond homolysis and thiyl radical formation. Biochemistry 38:1221–1233

    Article  PubMed  CAS  Google Scholar 

  • Ludwig ML, Evans PR (1999) X-ray crystallography of B12 enzymes: methylmalonyl-CoA mutase and methionine synthase. In: Banerjee R (ed) Chemistry and biochemistry of B12. Wiley, New York, pp. 595–632

    Google Scholar 

  • Ludwig ML, Matthews RG (2002) B12-dependent methionine synthase: a structure that adapts to catalyze multiple methyl transfer reactions. Struct Mech: from Ashes to Enzymes 827:186–201

    Article  CAS  Google Scholar 

  • Mancia F, Evans PR (1998) Conformational changes on substrate binding to methylmalonyl CoA mutase and new insights into the free radical mechanism. Structure 6:711–720

    Article  PubMed  CAS  Google Scholar 

  • Mancia F, Keep NH, Nakagawa A, Leadlay PF, McSweeney S, Rasmussen B, Bösecke B, Diat O, Evans PR (1996) How coenzyme B12 radicals are generated: the crystal structure of methylmalonyl-coenzyme A mutase at 2 Å resolution. Structure 4:339–350

    Article  PubMed  CAS  Google Scholar 

  • Mancia F, Smith GA, Evans PR (1999) Crystal structure of substrate complexes of methylmalonyl-CoA mutase. Biochemistry 38:7999–8005

    Article  PubMed  CAS  Google Scholar 

  • Marsh ENG (2000) Coenzyme-B12-dependent glutamate mutase. Bioorg Chem 28:176–189

    Article  PubMed  CAS  Google Scholar 

  • Marsh ENG, Drennan CL (2001) Adenosylcobalamin-dependent isomerases: new insights into structure and mechanism. Curr Opin Chem Biol 5:499–505

    Article  PubMed  CAS  Google Scholar 

  • Marsh ENG, Holloway DE (1992) Cloning and sequencing of glutamate mutase component-S from Clostridium tetanomorphum – homologies with other cobalamin-dependent enzymes. Febs Lett 310:167–170

    Article  PubMed  CAS  Google Scholar 

  • Matthews RG (1999) Cobalamin-dependent methionine synthase. In: Banerjee R (ed) Chemistry and biochemistry of B12. Wiley, New York, pp. 681–706

    Google Scholar 

  • Matthews RG (2001) Cobalamin-dependent methyltransferases. Acc Chem Res 34:681–689

    Article  PubMed  CAS  Google Scholar 

  • Mosimann H, Kräutler B (2000) Methylcorrinoids methylate radicals – Their second biological mode of action? Angew Chem Int Ed 39:393–200

    Article  Google Scholar 

  • Pailes WH, Hogenkamp HPC (1968) Photolability of Co-alkylcobinamides. Biochemistry 7:4160–4166

    Article  PubMed  CAS  Google Scholar 

  • Pratt JM (1972) Inorganic chemistry of vitamin B12. Academic, New York

    Google Scholar 

  • Ragsdale SW, Kumar M, Zhao S, Menon S, Seravalli J, Doukov T (1998) Discovery of a biological organometallic reaction sequence involving vitamin B12. In: Kräutler B, Arigoni D, Golding BT (eds) Vitamin B12 and B12-proteins. Wiley-VCH, Weinheim, pp. 167–178

    Chapter  Google Scholar 

  • Randaccio L, Geremia S, Nardin G, Würges J (2006) X-ray structural chemistry of cobalamins. Coord Chem Rev 250:1332–1250

    Article  Google Scholar 

  • Reitzer R, Gruber K, Jogl G, Wagner, UG, Bothe H, Buckel W, Kratky C (1999) Glutamate mutase from Clostridium cochlearium: the structure of a coenzyme B12-dependent enzyme provides new mechanistic insights. Structure 7:891–902

    Article  PubMed  CAS  Google Scholar 

  • Rétey J (1990) Enzymatic-reaction selectivity by negative catalysis or how do enzymes deal with highly reactive intermediates. Angew Chem Int Ed 29:355–361

    Article  Google Scholar 

  • Rétey J (1998) Coenzyme B12-dependent enzymes and their models. In: Kräutler B, Arigoni D, Golding BT (eds) Vitamin B12 and B12-proteins. Wiley-VCH, Weinheim, pp. 273–288

    Chapter  Google Scholar 

  • Rétey J (1999) Stereospecifity of the coenzyme B12-catalyzed rearrangements and the role of negative catalysis. In: Banerjee R (ed) Chemistry and biochemistry of B12. Wiley, New York, pp. 271–288

    Google Scholar 

  • Rickes EL, Brink NG, Koniuszy FR, Wood TR, Folkers K (1948) Crystalline vitamin B12. Science 107:396–397

    Article  PubMed  CAS  Google Scholar 

  • Rosenblatt DS, Fenton WA (1999) Inborn errors of cobalamin metabolism. In: Banerjee R (ed) Chemistry and biochemistry of B12. Wiley, New York, pp. 367–384

    Google Scholar 

  • Sauer K, Thauer RK (1999) The role of corrinoids in methanogenesis. In: Banerjee R (ed) Chemistry and biochemistry of B12. Wiley, New York, pp. 655–679

    Google Scholar 

  • Schrauzer GN, Deutsch E (1969) Reactions of cobalt(I) supernucleophiles. The alkylation of vitamin B12s cobaloximes(I), and related compounds. J Am Chem Soc 91:3341–3350

    Article  PubMed  CAS  Google Scholar 

  • Scott AI, Roessner CA, Santander PJ (2003) Genetic and mechanistic exploration of the two pathways of vitamin B12 biosynthesis. In: Kadish KM, Smith KM Guilard R (eds) Porphyrin handbook. Elsevier Science, Amsterdam, pp. 211–228

    Google Scholar 

  • Shibata N, Masuda J, Tobimatsu T, Toraya T, Suto K, Morimoto Y, Yasuoka N (1999) A new mode of B12 binding and the direct participation of a potassium ion in enzyme catalysis: x-ray structure of diol dehydratase. Structure 7:997–1008

    Article  PubMed  CAS  Google Scholar 

  • Siebert A, Neumann A, Schubert T, Diekert G (2002) A non-dechlorinating strain of Dehalospirillum multivorans: evidence for a key role of the corrinoid cofactor in the synthesis of an active tetrachloroethene dehalogenase. Arch Microbiol 178:443–449

    Article  PubMed  CAS  Google Scholar 

  • Smith DM, Golding BT, Radom L (1999) Facilitation of enzyme-catalyzed reactions by partial proton transfer: application to coenzyme-B12-dependent methylmalonyl-CoA mutase. J Am Chem Soc 121:1383–1384

    Article  CAS  Google Scholar 

  • Smith EL, Parker LFJ (1948) Purification of anti-pernicious anaemia factor. Biochem J 43:R8–R9

    Google Scholar 

  • Stich TA, Yamanishi M, Banerjee R, Brunold TC (2005) Spectroscopic evidence for the formation of a four-coordinate Co2 + cobalamin species upon binding to the human ATP: Cobalamin adenosyltransferase. J Am Chem Soc 127:7660–7661

    Article  PubMed  CAS  Google Scholar 

  • Stubbe J (2000) Ribonucleotide reductases: the link between an RNA and a DNA world? Curr Opin Struct Biol 10:731–736

    Article  PubMed  CAS  Google Scholar 

  • Stubbe J, Licht S, Gerfen G, Silva D, Booker S (1998) Adenosylcobalamin-dependent ribonucleotide reductases: still amazing but no longer confusing. In: Kräutler B, Arigoni D, Golding BT (eds) Vitamin B12 and B12-proteins. Wiley-VCH, Weinheim, pp. 321–331

    Chapter  Google Scholar 

  • Stupperich E, Eisinger HJ, Albracht SPJ (1990) Evidence for a super-reduced cobamide as the major corrinoid fraction in vivo and a histidine residue as a cobalt ligand of the p-cresolyl cobamide in the acetogenic bacterium Sporomusa ovata. Eur J Biochem 193:105–109

    Article  PubMed  CAS  Google Scholar 

  • Stupperich E, Konle R, Lehle M (1998) Corrinoid-dependent methyl transfer reactions in Sporomusa ovata. In: Kräutler B, Arigoni, D, Golding BT (eds) Vitamin B12 and B12 proteins. Wiley VCH, Weinheim, pp. 179–187

    Chapter  Google Scholar 

  • Summers MF, Marzilli LG, Bax A (1986) Complete 1H and 13C assignments of coenzyme-B12 through the use of new two-dimensional NMR experiments. J Am Chem Soc 108:4285–4294

    Article  CAS  Google Scholar 

  • Tollinger M, Eichmüller C, Konrat R, Huhta MS, Marsh ENG, Kräutler B (2001) The B12-binding subunit of glutamate mutase from Clostridium tetanomorphum traps the nucleotide moiety of coenzyme B12. J Mol Biol 309:777–791

    Article  PubMed  CAS  Google Scholar 

  • Tollinger M, Konrat R, Hilbert BH, Marsh ENG, Kräutler B (1998) How a protein prepares for B12 binding: structure and dynamics of the B12-binding subunit of glutamate mutase from Clostridium tetanomorphum. Structure 6:1021–1033

    Article  PubMed  CAS  Google Scholar 

  • Toraya T (2003) Radical catalysis in coenzyme B12-dependent isomerization (eliminating) reactions. Chem Rev 103:2095–2127

    Article  PubMed  CAS  Google Scholar 

  • Yamada K, Gravel, RA, Toraya T, Matthews RG (2006) Human methionine synthase reductase is a molecular chaperone for human methionine synthase. Proc Natl Acad Sci USA 103:9476–9481

    Article  PubMed  CAS  Google Scholar 

  • Yamanishi M, Vlasie M, Banerjee R (2005) Adenosyltransferase: an enzyme and an escort for coenzyme B12? Trends Biochem Sci 30:304–308

    Article  PubMed  CAS  Google Scholar 

  • Zerbe-Burkhardt K, Ratnatilleke A, Vrijbloed JW, Robinson JA (1999) Isobutyryl-CoA mutase. In: Banerjee R (ed) Chemistry and biochemistry of B12. Wiley, New York, pp. 859–870

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Austrian National Science Foundation (project No P13595) and by the European Commission (project No HPRN-CT-2002-00195).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Kräutler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kräutler, B. (2012). Biochemistry of B12-Cofactors in Human Metabolism. In: Stanger, O. (eds) Water Soluble Vitamins. Subcellular Biochemistry, vol 56. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2199-9_17

Download citation

Publish with us

Policies and ethics