Skip to main content

Nature Meets Technology: Forward Osmosis Membrane Technology

  • Chapter
  • First Online:
Biomimetic Membranes for Sensor and Separation Applications

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 1512 Accesses

Abstract

Biomimetic membranes may find a potential application in forward osmosis due to its capability of mimicking the highly-selective transmission of water or solutes through natural cell membranes and the gentle operating conditions of the forward osmosis process. The integration of these novel technologies for desalination may significantly reduce the energy consumption when compared to the reverse osmosis desalination technique. To further understand the process, this chapter presents fundamental concepts of forward osmosis, FO membrane characteristics, draw solute properties, as well as potential applications of FO processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achilli, A., Cath, T.Y., Childress, A.E.: Power generation with pressure retarded osmosis: an experimental and theoretical investigation. J. Membr. Sci. 343, 42–52 (2009a)

    Article  Google Scholar 

  • Achilli, A., Cath, T.Y., Marchand, E.A., Childress, A.E.: The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes. Desalination 239, 10–21 (2009b)

    Article  Google Scholar 

  • Adham, S., Oppenheimer, J., Liu, L., Kumar, M.: Dewatering Reverse Osmosis Concentrate from Water Reuse Applications Using Forward Osmosis. Water Reuse Foundation, Alexandria (2007)

    Google Scholar 

  • Babu, B.R., Rastogi, N.K., Raghavarao, K.S.M.S.: Effect of process parameters on transmembrane flux during direct osmosis. J. Membr. Sci. 280, 185–194 (2006)

    Article  Google Scholar 

  • Baker, R.: Membrane Technology and Applications, 2nd edn. Wiley, New York (2004)

    Book  Google Scholar 

  • Batchelder, G.W.: Process for the demineralization of water. US Patent 3,171,799, 1965

    Google Scholar 

  • Carter, J.W., Psaras, G., Price, M.T.: The effect of precipitating media on the performance of porous cellulose acetate reverse osmosis membranes. Desalination 12, 177–188 (1973)

    Article  Google Scholar 

  • Catalyx, Inc.: Forward osmosis for recycling dye wastewater. Filtration Sep. 46, 14–14 (2009)

    Google Scholar 

  • Cath, T.Y.: Osmotically and thermally driven membrane processes for enhancement of water recovery in desalination processes. Desalination Water Treat. 15, 279–286 (2010)

    Article  Google Scholar 

  • Cath, T.Y., Gormly, S., Beaudry, E.G., Flynn, M.T., Adams, V.D., Childress, A.E.: Membrane contactor processes for wastewater reclamation in space: part I. Direct osmotic concentration as pretreatment for reverse osmosis. J. Membr. Sci. 257, 85–98 (2005)

    Article  Google Scholar 

  • Cath, T.Y., Childress, A.E., Elimelech, M.: Forward osmosis: principles, applications, and recent developments. J. Membr. Sci. 281, 70–87 (2006)

    Article  Google Scholar 

  • Choi, Y.-J., Choi, J.-S., Oh, H.-J., Lee, S., Yang, D.R., Kim, J.H.: Towards a combined system of forward osmosis and reverse osmosis for seawater desalination. Desalination 247, 239–246 (2009)

    Article  Google Scholar 

  • Chou, S., Shi, L., Wang, R., Tang, C.Y., Qiu, C., Fane, A.G.: Characteristics and potential applications of a novel forward osmosis hollow fiber membrane. Desalination 261, 365–372 (2010)

    Article  Google Scholar 

  • Cornelissen, E.R., Harmsen, D., de Korte, K.F., Ruiken, C.J., Qin, J.-J., Oo, H., Wessels, L.P.: Membrane fouling and process performance of forward osmosis membranes on activated sludge. J. Membr. Sci. 319, 158–168 (2008)

    Article  Google Scholar 

  • Dova, M.I., Petrotos, K.B., Lazarides, H.N.: On the direct osmotic concentration of liquid foods. Part I: impact of process parameters on process performance. J. Food Eng. 78, 422–430 (2007a)

    Article  Google Scholar 

  • Dova, M.I., Petrotos, K.B., Lazarides, H.N.: On the direct osmotic concentration of liquid foods: part II. Development of a generalized model. J. Food Eng. 78, 431–437 (2007b)

    Article  Google Scholar 

  • Elimelech, M.: Yale constructs forward osmosis desalination pilot plant. Membr. Technol. 2007, 7–8 (2007)

    Article  Google Scholar 

  • Garcia-Costello, E., McCutcheon, J.R., Elimelech, M.: Performance evaluation of sucrose concentration using forward osmosis. J. Membr. Sci. 338, 61–66 (2009)

    Article  Google Scholar 

  • Gerstandt, K., Peinemann, K.-V., Skilhagen, S.E., Thorsen, T., Holt, T.: Membrane processes in energy supply for an osmotic power plant. Desalination 224, 64–70 (2008)

    Article  Google Scholar 

  • Glew, D.N.: Process for liquid recovery and solution concentration. US Patent 3,216,930, 1965

    Google Scholar 

  • Gray, G., McCutcheon, J.R., Elimelech, M.: Internal concentration polarization in forward osmosis: role of membrane orientation. Desalination 197, 1–8 (2006)

    Article  Google Scholar 

  • Hancock, N., Cath, T.Y.: Solute coupled diffusion in osmotically driven membrane processes. Environ. Sci. Technol. 43, 6769–6775 (2009)

    Article  Google Scholar 

  • Herron, J.: Asymmetric forward osmosis membranes. US Patent 7,445,712 B2, 2008

    Google Scholar 

  • Holloway, R.W., Childress, A.E., Dennett, K.E., Cath, T.Y.: Forward osmosis for concentration of anaerobic digester. Water Res. 41, 4005–4014 (2007)

    Article  Google Scholar 

  • Hydration Technology, Inc.: HTI HydroPack forms centrepiece of water disaster-relief demonstration in Kenya, Membrane Tech. 5, (2011)

    Google Scholar 

  • Jones, R.: Thoughts on the future of nanotechnology, http://www.softmachines.org/wordpress/?p=68 (2005)

  • Kessler, J.O., Moody, C.D.: Drinking water from sea water by forward osmosis. Desalination 18, 297–306 (1976)

    Article  Google Scholar 

  • Khaydarov, R.A., Khaydarov, R.R.: Solar powered direct osmosis desalination. Desalination 217, 225–232 (2007)

    Article  Google Scholar 

  • Klajnert, B., Bryszewska, M.: Dendrimers: properties and applications. Acta Biochim. Pol. 48, 19–208 (2001)

    Google Scholar 

  • Kravath, R.E., Davis, J.A.: Desalination of sea water by direct osmosis. Desalination 16, 151–155 (1975)

    Article  Google Scholar 

  • Lampi, K., Beaudry, E., Herron, J.: Forward osmosis pressurized device and process for generating potable water. US Patent 6,849,184, 2005

    Google Scholar 

  • Lee, K.L., Baker, R.W., Lonsdale, H.K.: Membranes for power generation by pressure-retarded osmosis. J. Membr. Sci. 8, 141–171 (1981)

    Article  Google Scholar 

  • Ling, M.M., Wang, K.Y., Chung, T.-S.: Highly water-soluble magnetic nanoparticles as novel draw solutes in forward osmosis for water reuse. Ind. Eng. Chem. Res. 49, 5869–5876 (2010)

    Article  Google Scholar 

  • Loeb, S.: Energy production at the Dead Sea by pressure-retarded osmosis: challenge or chimera? Desalination 120, 247–262 (1998)

    Article  Google Scholar 

  • Loeb, S.: Large-scale power production by pressure-retarded osmosis, using river water and sea water passing through spiral modules. Desalination 143, 115–122 (2002)

    Article  Google Scholar 

  • Loeb, S., Titelman, L., Korngold, E., Freiman, J.: Effect of porous support fabric on osmosis through a Loeb-Sourirajan type asymmetric membrane. J. Membr. Sci. 129, 243–249 (1997)

    Article  Google Scholar 

  • Lubik, S.J., Garnsey, E.: Getting advanced materials to market. Paper presented at the DRUID-DIME Academy Winter 2009 Ph.D. conference on economics and management of innovation, technology and organizational change, Aalborg, 22–24 Jan 2009

    Google Scholar 

  • Martinetti, C.R., Childress, A.E., Cath, T.Y.: High recovery of concentrated RO brines using forward osmosis and membrane distillation. J. Membr. Sci. 231, 31–39 (2009)

    Article  Google Scholar 

  • McCutcheon, J.R., Elimelech, M.: Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis. J. Membr. Sci. 284, 237–247 (2006a)

    Article  Google Scholar 

  • McCutcheon, J.R., Elimelech, M.: Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes. J. Membr. Sci. 318, 458–466 (2008)

    Article  Google Scholar 

  • McCutcheon, J.R., McGinnis, R.L., Elimelech, M.: A novel ammonia-carbon dioxide forward direct osmosis desalination process. Desalination 174, 1–11 (2005)

    Article  Google Scholar 

  • McCutcheon, J.R., McGinnis, R.L., Elimelech, M.: Desalination by ammonia-carbon dioxide forward osmosis: influence of draw and feed solution concentrations on process performance. J. Membr. Sci. 278, 114–123 (2006b)

    Article  Google Scholar 

  • McGinnis, R.L.: Osmotic desalinization process. US Patent 6,391,205, 2002

    Google Scholar 

  • McGinnis, R.L.: Osmotic desalination process. US Patent 7,560,029, 2009

    Google Scholar 

  • McGinnis, R.L., Elimelech, M.: Energy requirements of ammonia-carbon dioxide forward osmosis desalination. Desalination 207, 370–382 (2007)

    Article  Google Scholar 

  • Mehta, G.D., Loeb, S.: Internal polarization in the porous substructure of a semi-permeable membrane under pressure-retarded osmosis. J. Membr. Sci. 4, 261–265 (1978)

    Article  Google Scholar 

  • Mehta, G.D., Loeb, S.: Performance of permasep B-9 and B-10 membranes in various osmotic regions and at high osmotic pressures. J. Membr. Sci. 4, 335–349 (1979)

    Article  Google Scholar 

  • Mi, B., Elimelech, M.: Chemical and physical aspects of organic fouling of forward osmosis membranes. J. Membr. Sci. 320, 292–302 (2008)

    Article  Google Scholar 

  • Mi, B., Elimelech, M.: Organic fouling of forward osmosis membranes: fouling reversibility and cleaning without chemical reagents. J. Membr. Sci. 348, 337–345 (2010)

    Article  Google Scholar 

  • Michaels, A.S., Bixler, H.J., Hodges, R.M.: Kinetics of water and salt transport in cellulose acetate reverse osmosis desalination membranes. J. Colloid Sci. 20, 1034–1056 (1965)

    Article  Google Scholar 

  • Miller, J.E., Evans, L.R.: Forward osmosis: a new approach to water purification and desalination. In: Sandia Report. vol. SAND2006-4634. Sandia National Laboratories, California (2006)

    Google Scholar 

  • Moody, C.D., Kessler, J.O.: Forward osmosis extractors. Desalination 18, 283–295 (1976)

    Article  Google Scholar 

  • Nayak, C.A., Rastogi, N.K.: Forward osmosis for the concentration of anthocyanin from Garcinia indica Choisy. Sep. Purif. Technol. 71, 144–151 (2010)

    Google Scholar 

  • Ng, H.Y., Tang, W., Wong, W.S.: Performance of forward (direct) osmosis process: membrane structure and transport phenomenon. Environ. Sci. Technol. 40, 2408–2413 (2006)

    Article  Google Scholar 

  • Nielsen, C.H.: Biomimetic membranes for sensor and separation applications. Anal. Bioanal. Chem. 395, 697–718 (2009)

    Google Scholar 

  • Petrotos, K.B., Quantick, P., Petropakis, H.: A study of the direct osmotic concentration of tomato juice in tubular membrane – module configuration. I. The effect of certain basic process parameters on the process performance. J. Membr. Sci. 150, 99–110 (1998)

    Article  Google Scholar 

  • Petrotos, K.B., Quantick, P.C., Petropakis, H.: Direct osmotic concentration of tomato juice in tubular membrane – module configuration. II. The effect of using clarified tomato juice on the process performance. J. Membr. Sci. 160, 171–177 (1999)

    Article  Google Scholar 

  • Petrotos, K.B., Tsiadi, A.V., Poirazis, E., Papadopoulos, D., Petropakis, H., Gkoutsidis, P.: A description of a flat geometry direct osmotic concentrator to concentrate tomato juice at ambient temperature and low pressure. J. Food Eng. 97, 235–242 (2010)

    Article  Google Scholar 

  • Ren, J., Wang, R.: Preparation of polymeric membranes. In: Wang, L.K., Chen, J.P., Hung, Y.-T., Shammas, N.K. (eds.) Membrane and Desalination Technologies. Handbook of Environmental Engineering, vol. 13. Humana Press, Inc., Totowa (2011)

    Google Scholar 

  • Shi, L., Chou, S.R., Wang, R., Fang, W.X., Tang, C.Y., Fane, A.G.: Effect of substrate structure on the performance of thin-film composite forward osmosis hollow fiber membranes. J. Membr. Sci. 382, 116–123 (2011)

    Google Scholar 

  • Stache, K.: Apparatus for transforming sea water, brackish water, polluted water or the like into a nutrious drink by means of osmosis. US Patent 4,879,030, 1989

    Google Scholar 

  • Su, J., Yang, Q., Teo, J.F., Chung, T.-S.: Cellulose acetate nanofiltration hollow fiber membranes for forward osmosis processes. J. Membr. Sci. 355, 36–44 (2010)

    Article  Google Scholar 

  • Tan, C.H., Ng, H.Y.: A novel hybrid forward osmosis-nanofiltration (FO-NF) process for seawater desalination: draw solution selection and system configuration. Desalination Water Treat. 13, 356–361 (2010)

    Article  Google Scholar 

  • Tang, W., Ng, H.Y.: Concentration of brine by forward osmosis: Performance and influence of membrane structure. Desalination 224, 143–153 (2008)

    Article  Google Scholar 

  • Tang, C.Y., She, Q., Lay, C.L.W., Wang, R., Fane, A.G.: Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration. J. Membr. Sci. 354, 123–133 (2010)

    Article  Google Scholar 

  • Trent, J.D., Gormly, S.J., Delzeit, L.D., Flynn, M.T, Embaye, T.N.: Algae bioreactor using submerged enclosures with semi-permeable membranes. US Patent Application Publication, Pub. No.: US 2010/0216203 A1, 2010

    Google Scholar 

  • Wang, K.Y., Chung, T.-S., Qin, J.-J.: Polybenzimidazole (PBI) nanofiltration hollow fiber membranes applied in forward osmosis process. J. Membr. Sci. 300, 6–12 (2007)

    Article  Google Scholar 

  • Wang, K.Y., Yang, Q., Chung, T.S., Rajagopalan, R.: Enhanced forward osmosis from chemically modified polybenzimidazole (PBI) nanofiltration hollow fiber membranes with a thin wall. Chem. Eng. Sci. 64, 1577–1584 (2009)

    Article  Google Scholar 

  • Wang, K.Y., Ong, R.C., Chung, T.S.: Double-skinned forward osmosis membranes for reducing internal concentration polarization within the porous sublayer. Ind. Eng. Chem. Res. 49, 4824–4831 (2010a)

    Article  Google Scholar 

  • Wang, R., Shi, L., Tang, C.Y., Chou, S., Qiu, C., Fane, A.G.: Characterization of novel forward osmosis hollow fiber membranes. J. Membr. Sci. 355, 158–167 (2010b)

    Article  Google Scholar 

  • Wang, Y., Wicaksana, F., Tang, C., Fane, A.G.: Direct microscopic observation of forward osmosis membrane fouling. Environ. Sci. Technol. 44, 7102–7109 (2010c)

    Article  Google Scholar 

  • Wright, J.C., Johnson, R.M., Yum, S.I.: DUROS osmotic pharmaceutical systems for parenteral & site-directed therapy. Drug Deliv. Technol. 3, 64–73 (2003)

    Google Scholar 

  • Wrolstad, R.E., McDaniel, M.R., Durst, R.W., Micheals, N., Lampi, K.A., Beaudry, E.G.: Composition and sensory characterization of red raspberry juice concentrated by direct osmosis or evaporation. J. Food Sci. 58, 633–637 (1993)

    Article  Google Scholar 

  • Xu, Y., Peng, X., Tang, C.Y., Fu, Q.S., Nie, S.: Effect of draw solution concentration and operating conditions on forward osmosis and pressure retarded osmosis performance in a spiral wound module. J. Membr. Sci. 348, 298–309 (2010)

    Article  Google Scholar 

  • Yaeli, J.: Method and apparatus for processing liquid solutions of suspensions particularly useful in the desalination of saline water. US Patent 5,098,575, 1992

    Google Scholar 

  • Yang, Q., Wang, K.Y., Chung, T.S.: Dual-layer hollow fibers with enhanced flux as novel forward osmosis membranes for water production. Environ. Sci. Technol. 43, 2800–2805 (2009a)

    Article  Google Scholar 

  • Yang, Q., Wang, K.Y., Chung, T.S.: A novel dual-layer forward osmosis membrane for protein enrichment and concentration. Sep. Purif. Technol. 69, 269–274 (2009b)

    Article  Google Scholar 

  • Yang, Q., Wang, K.Y., Chung, T.S.: Dual-layer hollow fibers with enhanced flux as forward osmosis membranes for water reuses and protein enrichment. US Patent WO 2010/045430 A2, 2010

    Google Scholar 

  • Yip, N.Y., Tiraferri, A., Philip, W.A., Schiffman, J.D., Elimelech, M.: High performance thin-film composite forward osmosis membrane. Environ. Sci. Technol. 44, 3812–3818 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filicia Wicaksana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wicaksana, F., Fane, A.G., Tang, C., Wang, R. (2011). Nature Meets Technology: Forward Osmosis Membrane Technology. In: Hélix-Nielsen, C. (eds) Biomimetic Membranes for Sensor and Separation Applications. Biological and Medical Physics, Biomedical Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2184-5_2

Download citation

Publish with us

Policies and ethics