Skip to main content

Oxidative DNA Damage Mediated by Transition Metal Ions and Their Complexes

  • Chapter
  • First Online:
Interplay between Metal Ions and Nucleic Acids

Part of the book series: Metal Ions in Life Sciences ((MILS,volume 10))

Abstract

DNA damage by redox-active metal complexes depends on the interaction of the metal complex with DNA together with the mechanism of oxygen activation. Weak interaction, tight binding, and direct involvement of DNA in the coordination sphere of the metal are described. Metal complexes acting through the production of diffusing radicals and metal complexes oxidizing DNA by metal-centered active species are compared. Metal complexes able to form high-valent metal-oxo species in close contact with DNA and perform DNA oxidation in a way reminiscent of enzymatic chemistry are the most elegant systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. T. Groves, J. Inorg. Biochem. 2006, 100, 434–447.

    Article  CAS  PubMed  Google Scholar 

  2. L. Que, Jr., Acc. Chem. Res. 2007, 40, 493–500.

    Article  CAS  PubMed  Google Scholar 

  3. L. Que, Jr., W. B. Tolman, Nature 2008, 455, 333–340.

    Article  CAS  PubMed  Google Scholar 

  4. M. Pitié, G. Pratviel, Chem. Rev. 2010, 110, 1018–1059.

    Article  PubMed  Google Scholar 

  5. A. Gunay, K. H. Theopold, Chem. Rev. 2010, 110, 1060–1081.

    Article  CAS  PubMed  Google Scholar 

  6. B. Meunier, S. P. de Visser, S. Shaik, Chem. Rev. 2004,104, 3947–3980.

    Article  CAS  PubMed  Google Scholar 

  7. S. Shaik, H. Hirao, D. Kumar, Acc. Chem. Res. 2007, 40, 532–542.

    Article  CAS  PubMed  Google Scholar 

  8. T. Punniyamurthy, S. Velusamy, J. Iqbal, Chem. Rev. 2005, 105, 2329–2363.

    Article  CAS  PubMed  Google Scholar 

  9. S. V. Kryatov, E. V. Rybak-Akimova, S. Schindler, Chem. Rev. 2005, 105, 2175–2226.

    Article  CAS  PubMed  Google Scholar 

  10. M. M. Abu-Omar, A. Loaiza, N. Hontzeas, Chem. Rev. 2005, 105, 2227–2252.

    Article  CAS  PubMed  Google Scholar 

  11. E. I. Solomon, P. Chen, M. Metz, S. K. Lee, A. E. Palmer, Angew. Chem. Int. Ed. 2001, 40, 4570–4590.

    Article  CAS  Google Scholar 

  12. R. A. Himes, K. D. Karlin, Curr. Opin. Chem. Biol. 2009, 13, 119–131.

    Article  CAS  PubMed  Google Scholar 

  13. S. Steenken, S. V. Jovanovic, J. Am. Chem. Soc. 1997, 119, 617–618.

    Article  CAS  Google Scholar 

  14. C. von Sonntag, Free-Radical-Induced DNA Damage and Its Repair, A Chemical Perspective, Springer-Verlag, Berlin, Heidelberg, New York, 2006.

    Google Scholar 

  15. J. R. Wagner, J. Cadet, Acc. Chem. Res. 2010, 43, 564–571.

    Article  CAS  PubMed  Google Scholar 

  16. J. Cadet, T. Douki, J. L. Ravanat, Free Radical Biol. Med. 2010, 49, 9–21.

    Article  CAS  Google Scholar 

  17. C. J. Burrows, J. G. Muller, Chem. Rev. 1998, 98, 1109–1152.

    Article  CAS  PubMed  Google Scholar 

  18. W. K. Pogozelski, T. D. Tullius, Chem. Rev. 1998, 98, 1089–1108.

    Article  CAS  PubMed  Google Scholar 

  19. T. D. Tullius, J. A. Greenbaum, Curr. Opin. Chem. Biol. 2005, 9, 127–134.

    Article  CAS  PubMed  Google Scholar 

  20. S. S. Jain, T. D. Tullius, Nat. Protoc. 2008, 3,1092–1100.

    Article  CAS  PubMed  Google Scholar 

  21. P. B. Dervan, Science 1986, 232, 464–471.

    Article  CAS  PubMed  Google Scholar 

  22. D. P. Mack, B. L. Iverson, P. B. Dervan, J. Am. Chem. Soc. 1988, 110, 7572–7574.

    Article  CAS  Google Scholar 

  23. R. Baliga, J. W. Singleton, P. B. Dervan, Proc. Natl. Acad. Sci. USA 1995, 92, 10393–10397.

    Article  CAS  PubMed  Google Scholar 

  24. J. C. Genereux, J. K. Barton, Chem. Rev. 2010, 110, 1642–1662.

    Article  CAS  PubMed  Google Scholar 

  25. G. Pratviel, B. Meunier, Chem. Eur. J. 2006, 12, 6018–6030.

    Article  CAS  PubMed  Google Scholar 

  26. C. J. Murphy, M. R. Arkin, Y. Jenkins, N. D. Ghatlia, S. H. Bossmann, N. J. Turro, J. K. Barton, Science 1993, 262, 1025–1029.

    Article  CAS  PubMed  Google Scholar 

  27. D. B. Hall, R. E. Holmlin, J. K. Barton, Nature 1996, 382, 731–735.

    Article  CAS  PubMed  Google Scholar 

  28. C. Vialas, G. Pratviel, C. Claparols, B. Meunier, J. Am. Chem. Soc. 1998, 120, 11548–11553.

    Article  CAS  Google Scholar 

  29. M. Pitié, C. Boldron, G. Pratviel, Adv. Inorg. Chem. 2006, 58, 77–130.

    Article  Google Scholar 

  30. B. Mestre, A. Jakobs, G. Pratviel, B. Meunier, Biochemistry 1996, 35, 9140–9149.

    Article  CAS  PubMed  Google Scholar 

  31. R. E. Kilkuskie, H. Suguna, B. Yellin, N. Murugesan, S.M. Hecht, J. Am. Chem. Soc. 1985, 107, 260–261.

    Article  CAS  Google Scholar 

  32. J. Bernadou, G. Pratviel, F. Bennis, M. Girardet, B. Meunier, Biochemistry 1989, 28, 7268–7275.

    Article  CAS  PubMed  Google Scholar 

  33. D. H. Petering, Q. Mao, W. Li, E. DeRose, W. E. Antholine, Met. Ions Biol. Syst. 1996, 33, 619–648.

    CAS  PubMed  Google Scholar 

  34. R. M. Burger, Chem. Rev. 1998, 98, 1153–1170.

    Article  CAS  PubMed  Google Scholar 

  35. C. A. Claussen, E. C. Long, Chem. Rev. 1999, 99, 2797–2816.

    Article  CAS  PubMed  Google Scholar 

  36. J. Chen, J. Stubbe, Curr. Opin. Chem. Biol. 2004, 8, 175–181.

    Article  CAS  PubMed  Google Scholar 

  37. S. T. Hoehn, H. D. Junker, R. C. Bunt, C. J. Turner, J. Stubbe, Biochemistry 2001, 40, 5894–5905.

    Article  CAS  PubMed  Google Scholar 

  38. C. Zhao, C. Xia, Q. Mao, H. Forsterling, E. DeRose, W.E. Antholine, W.K. Subczynski, D. H. Petering, J. Inorg. Biochem. 2002, 91, 259–268.

    Article  Google Scholar 

  39. K. D. Goodwin, M. A. Lewis, E. C. Long, M. M. Georgiadis, Proc. Natl. Acad. Sci. USA 2008, 105, 5052–5056.

    Article  CAS  PubMed  Google Scholar 

  40. J. Chen, J. Stubbe, Nat. Rev. Cancer 2005, 5, 102–112.

    Article  CAS  PubMed  Google Scholar 

  41. A. T. Abraham, X. Zhou, S.M. Hecht, J. Am. Chem. Soc. 2001, 123, 5167–5175.

    Article  CAS  PubMed  Google Scholar 

  42. J. Chen, M. K. Ghorai, G. Kenney, J. Stubbe, Nucleic Acids Res. 2008, 36, 3781–3790.

    Article  CAS  PubMed  Google Scholar 

  43. J. T. Groves, J. B. Lee, S. S. Marla, J. Am. Chem. Soc. 1997, 119, 6269–6273.

    Article  CAS  Google Scholar 

  44. P. Arnaud, K. Zakrzewska, B. Meunier, J. Comput. Chem. 2003, 24, 797–805.

    Article  CAS  PubMed  Google Scholar 

  45. M. Pitié, J. Bernadou, B. Meunier, J. Am. Chem. Soc. 1995, 117, 2935–2336.

    Article  Google Scholar 

  46. G. Pratviel, M. Pitié, J. Bernadou, B. Meunier, Angew. Chem. Int. Ed. 1991, 30, 702–704.

    Article  Google Scholar 

  47. C. Vialas, G. Pratviel, B. Meunier, Biochemistry 2000, 39, 9514–9522.

    Article  CAS  PubMed  Google Scholar 

  48. X. Chen, S. E. Rokita, C. J. Burrows, J. Am. Chem. Soc. 1991, 113, 5884–5886.

    Article  CAS  Google Scholar 

  49. J. G. Muller, X. Chen, A. C. Dadiz, S. E. Rokita, C. J. Burrows, J. Am. Chem. Soc. 1992, 114, 6407–6411.

    Article  CAS  Google Scholar 

  50. J. G. Muller, X. Chen, A. C. Dadiz, S. E. Rokita, C. J. Burrows, Pure Appl. Chem. 1993, 65, 545–550.

    Article  CAS  Google Scholar 

  51. C. J. Burrows, S. E. Rokita, Acc. Chem. Res. 1994, 27, 295–301.

    Article  CAS  Google Scholar 

  52. H.-C. Shih, N. Tang, C. J. Burrows, S. E. Rokita, J. Am. Chem. Soc. 1998, 120, 3284–3288.

    Article  CAS  Google Scholar 

  53. H.-C. Shih, H. Kassahun, C. J. Burrows, S. E. Rokita, Biochemistry 1999, 38, 15034–15042.

    Article  CAS  PubMed  Google Scholar 

  54. P. Ghude, M. A. Schallenberger, A. M. Fleming, J. G. Muller, C. J. Burrows, Inorg. Chim. Acta 2011, doi:10.1016/j.ica.2010.12.063.

    Google Scholar 

  55. W. Ye, R. Sangaiah, D. E. Degen, A. Gold, K. Jayaraj, K. M. Koshlap, G. Boysen, J. Williams, K. B. Tomer, L. M. Ball, Chem. Res. Toxicol. 2006,19, 506–510.

    Article  CAS  PubMed  Google Scholar 

  56. W. Ye, R. Sangaiah, D. E. Degen, A. Gold, K. Jayaraj, K. M. Koshlap, G. Boysen, J. Williams, K. B. Tomer, V. Mocanu, N. Dicheva, C. E. Parker, R. M. Schaaper, L. M. Ball, J. Am. Chem. Soc. 2009, 131, 6114–6123.

    Article  CAS  PubMed  Google Scholar 

  57. L. Li, K. D. Karlin, S. E. Rokita, J. Am. Chem. Soc. 2005, 127, 520–521.

    Article  CAS  PubMed  Google Scholar 

  58. S. Choi, R. B. Cooley, A. S. Hakemian, Y. C. Larrabee, R. C. Bunt, S. D. Maupas, J. G. Muller, C. J. Burrows, J. Am. Chem. Soc. 2004, 126, 591–598.

    Article  CAS  PubMed  Google Scholar 

  59. S. Choi, R. B. Cooley, A. Voutchkova, C. H. Leung, L. Vastag, D. E. Knowles, J. Am. Chem. Soc. 2005, 127, 1773–1781.

    Article  CAS  PubMed  Google Scholar 

  60. S. Choi, L. Vastag, C. H. Leung, A. M. Beard, D. E. Knowles, J. A. Larrabee, Inorg. Chem. 2006, 45, 10108–10114.

    Article  CAS  PubMed  Google Scholar 

  61. S. Choi, L. Vastag, Y. C. Larrabee, M. L. Personick, K. B. Schaberg, B. J. Fowler, R. K. Sandwick, G. Rawji, Inorg. Chem. 2008, 47, 1352–1360.

    Article  CAS  PubMed  Google Scholar 

  62. R. M. Roat, M. J. Jerardi, C. B. Kopay, V. Heath, J. A. Clark, J. A. DeMars, J. M. Weaver, E. Bezemer, J. Reedijk, J. Chem. Soc., Dalton Trans. 1997, 3115–3621.

    Google Scholar 

  63. Note added in proof: Coordination of copper at the N7 of guanine was also proposed to be at the origin of guanine oxidation, see A. M. Fleming, J. G. Muller, I. Ji, C. J. Burrows. Org. Biomol. Chem. 2011, 9, 3338–3348.

    Google Scholar 

Download references

Acknowledgments

The contribution of coauthors whose names appear in the references is acknowledged. This article is dedicated to Dr Marguerite Pitié.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geneviève Pratviel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pratviel, G. (2012). Oxidative DNA Damage Mediated by Transition Metal Ions and Their Complexes. In: Sigel, A., Sigel, H., Sigel, R. (eds) Interplay between Metal Ions and Nucleic Acids. Metal Ions in Life Sciences, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2172-2_7

Download citation

Publish with us

Policies and ethics