Skip to main content

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 163))

  • 1704 Accesses

Abstract

The ability of any optical element to operate in a laser cavity is defined by a positive balance of active and passive losses for the cavity with that element. Reflective objects create transmission, scattering, and absorption losses; transmission ones create reflection, scattering, and absorption losses, etc. It is critical for the loss under study to be measured at a specific spatial, spectral, and temporal condition of light emission providing adequate measurement arrangements. Let us consider two methods for passive intracavity measurements of a high specular reflectance: ρr → 1, of a mirror. Such a reflectance may be measured directly or by sensing the difference from unity of the sum of its scattering loss, absorptance, and transmittance, considering a mirror substrate as a vital part.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rayleigh, 3rd Baron, On the reflection of light from regularly stratified medium, Proc. R. Soc. A 93, 565–577 (1917)

    Google Scholar 

  2. M.A. Bukshtab, Measurement techniques for high reflectance and low scattering of laser mirrors, Ph.D. Dissertation, The Vavilov’ State Optical Institute, Leningrad, 1983

    Google Scholar 

  3. D.C. O’Shea, W.R. Callen, W.T. Rhodes, Introduction to Lasers and their Application (Addison-Wesley, London, 1976)

    Google Scholar 

  4. A. Yariv, Quantum electronics, 3rd edn. (Wiley, New York, 1989)

    Google Scholar 

  5. T. von Lerber, H. Ludvigsen, A. Romann, Resonator based measurement technique for quantification of minute birefringence. Opt. Express 12(7), 1363–1371 (2004)

    Article  ADS  Google Scholar 

  6. B.I. Stepanov (ed.), Method of design calculations for optical quantum generators, vol. 1 (Nauka & Technika, Minsk, 1966)

    Google Scholar 

  7. H.W. Kogelnik, T. Li, Laser beams and resonators. Appl. Opt. 5(10), 1550–1567 (1966)

    Article  ADS  Google Scholar 

  8. A.E. Siegman, Lasers (University Science, Mill Valley, 1986)

    Google Scholar 

  9. Yu.A. Ananiev, Optical Resonators and Divergence of Laser Radiation (Nauka, Moscow, 1979)

    Google Scholar 

  10. K. Petermann, Laser Diode Modulation and Noise (Kluwer, Dordrecht, 1988)

    Book  Google Scholar 

  11. U. Wiedmann, P. Gallion, G.-H. Duan, A generalized approach to optical low-coherence reflectometry including spectral filtering effects. J. Lightwave Technol. 16(7), 1343–1347 (1998)

    Article  ADS  Google Scholar 

  12. R.D. van Zee, J.P. Looney (eds.), Cavity-Enhanced Spectroscopies. Experimental Methods in the Physical Sciences, vol. 40 (Elsevier, New York, 2002)

    Google Scholar 

  13. C.R. Wylie, Advances in Engineering Mathematics (McGraw-Hill, New York, 1960)

    Google Scholar 

  14. K.K. Lehman, D. Romanini, The superposition principle and cavity ring-down spectroscopy. J. Chem. Phys. 105(23), 10263–10277 (1996)

    Article  ADS  Google Scholar 

  15. J.W. Hahn, Y.S. Yoo, J.Y. Lee, J.W. Kim, H.-W. Lee, Cavity ringdown spectroscopy with a continuous-wave laser: calculation of coupling efficiency and a new spectrometer design. Appl. Opt. 38(9), 1859–1866 (1999)

    Article  ADS  Google Scholar 

  16. J.W. Kim, Y.S. Yoo, J.Y. Lee, J.B. Lee, J.W. Hahn, Uncertainty analysis of absolute concentration measurement with continuous-wave cavity ringdown spectroscopy. Appl. Opt. 40(30), 5509–5516 (2001)

    Article  ADS  Google Scholar 

  17. N.J. van Leeuwen, J.C. Diettrich, A.C. Wilson, Periodically locked continuous-wave cavity ringdown spectroscopy. Appl. Opt. 42(18), 3670–3677 (2003)

    Article  ADS  Google Scholar 

  18. V.V. Appolonov, A.I. Barchukov, V.K. Konukhov, Measurements of scattering of laser mirrors reflecting main CO2 laser beams. Quantum Electron. 4(16), 103–105 (1973)

    Google Scholar 

  19. O. De-Lange, Long-distance directional transmission of light signals. Proc. IEEE 1(10), 1350 (1963)

    Google Scholar 

  20. L.S. Kornienko, B.G. Skuibin, About a possibility of measurements of selective optical losses. Opt. Spectrosc. 40(3), 571–573 (1976)

    Google Scholar 

  21. E.S. Voropai, A.M. Sardgevsriy, P.A. Torpachev, Method of low loss measurements. J. Appl. Spectrosc. 34(1), 150–155 (1981)

    Article  Google Scholar 

  22. J. Brochard, Ph Cahuzac, Application des techniques d’absorption saturée á l’értitude de la relaxion des vitesses d’atomes me’tastables sous l’effet des choes e’lastiques. J. Phys. B At. Mol. Phys. 9(12), 2027–2034 (1976)

    Article  ADS  Google Scholar 

  23. A.J. Rock, M.R. Biazzo, A technique for measuring small optical loss using an oscillating spherical interferometer. Bell Syst. Tech. J. 43(4), 1563–1579 (1964)

    Article  Google Scholar 

  24. N.K. Berger, E.N. Bondarchuk, V.V. Dembovetskiy, Method of laser-mirror reflectance measurements, Avtometria, Moscow, 1977, No. 1, pp. 109–111.

    Google Scholar 

  25. Ph Cahuzac, G. Golman, Mesure des pouvoirs re’flecteurs e’leve’s a l’aide d’une cavité optique a réflexion multiples. Nouv. Rev. Optique 7(6), 363–367 (1976)

    Article  ADS  Google Scholar 

  26. J.M. Herbelin, J.A. McKay, M.A. Kwok, R.H. Ueunten, D.S. Ureving, D.J. Spencer, D.J. Benard, Sensitive measurement of photon lifetime and true reflectances in an optical cavity by a phase-shift method. Appl. Opt. 19(1), 144–147 (1980)

    Article  ADS  Google Scholar 

  27. J.M. Herbelin, J.A. McKay, Development of laser mirrors of very high reflectivity using the cavity attenuated phase-shift method. Appl. Opt. 20(19), 3341–3344 (1980)

    Article  ADS  Google Scholar 

  28. M.A. Kwok, J.M. Herbelin, R.H. Ueunten, Cavity phase-shift method for high reflectance measurements at mid-infrared wavelength. Opt. Eng. 21(6), 979–982 (1982)

    Article  Google Scholar 

  29. See reference[7.29]

    Google Scholar 

  30. D.Z. Anderson, J.C. Frisch, C.S. Masser, Mirror reflectometer based on optical cavity decay time. Appl. Opt. 23(8), 1238–1245 (1984)

    Article  ADS  Google Scholar 

  31. G. Rempe, R.J. Thompson, H.J. Kimble, R. Lalezari, Measurement of ultralow losses in an optical interferometer. Opt. Lett. 17(5), 363–365 (1992)

    Article  ADS  Google Scholar 

  32. M.A. Bukhshtab, Resonator technique for absolute reflection and transmission measurements. J. Appl. Spectrosc. 37(5), 1330–1335 (1982)

    Article  ADS  Google Scholar 

  33. Y. Le Grand, A. Le Floch, Measurement of residual reflectivities using the two eigenstates of a passive cavity. Appl. Opt. 27(23), 4925–4930 (1988)

    Article  ADS  Google Scholar 

  34. D. Jacob, F. Bretenaker, P. Pourcelot, Ph Rio, M. Dumont, A. Dore, Pulsed measurement of high-reflectivity mirror phase retardance. Appl. Opt. 33(15), 3175–3178 (1994)

    Article  ADS  Google Scholar 

  35. E.R. Crosson, P. Haar, G.A. Marcus, H.A. Schwettman, B.A. Paldus, T.G. Spence, R.N. Zare, Pulse-stacked cavity ring-down spectroscopy. Rev. Sci. Instrum. 70(1), 4–10 (1999)

    Article  ADS  Google Scholar 

  36. W.H. Knox, N.M. Pearson, K.D. Li, Ch.A. Hirlimann, Interferometric measurements of femtosecond group delay in optical components. Opt. Lett. 13(7), 574–576 (1988)

    Article  ADS  Google Scholar 

  37. K. Naganuma, K. Mogi, H. Yamada, Group-delay measurement using the Fourier transform of an interferometric cross correlation generated by white light. Opt. Lett. 15(7), 393–395 (1990)

    Article  ADS  Google Scholar 

  38. A.P. Kovàcs, K. Osvay, Zs Bor, R. Szipöcs, Group-delay measurement on laser mirrors by spectrally resolved white light interferometry. Opt. Lett. 20(7), 788–790 (1995)

    Article  ADS  Google Scholar 

  39. W.H. Knox, In situ measurement of complete intracavity dispersion in an operating Ti: sapphire femtosecond laser. Opt. Lett. 17(7), 514–516 (1992)

    Article  ADS  Google Scholar 

  40. W.H. Knox, Dispersion measurements for femtosecond-pulse generation and applications. Appl. Phys. B 58, 225–235 (1994)

    Article  ADS  Google Scholar 

  41. K. Naganuma, Y. Sakai, Interferometric measurement of wavelength dispersion of femtosecond laser cavities. Opt. Lett. 19(7), 487–489 (1994)

    Article  ADS  Google Scholar 

  42. M.A. Bukhshtab, Low phase dispersion measurements of laser cavity components by spectro-photometric resonating technique, OSA Annual Meeting - ILS-X Conference, Dallas, 1994, p. 145

    Google Scholar 

  43. M.A. Bukhshtab, Spectrophotometric resonant measurement of wavelength phase dispersion on femtosecond laser cavities and single elements during their fabrication. Opt. Commun. 123(4–6), 430–436 (1996)

    Article  ADS  Google Scholar 

  44. Y. Le Grand, A. Le Froch, Sensitive dichroism measurement using eigenstate decay times. Appl. Opt. 29(9), 1244–1246 (1990)

    Article  ADS  Google Scholar 

  45. A. Miks, J. Novak, P. Novak, Colorimetric method for phase evaluation. J. Opt. Soc. Am. A 23(4), 894–901 (2006)

    Article  ADS  Google Scholar 

  46. T.G. Spence, C.C. Harb, B.A. Paldus, R.N. Zare, B. Willke, R.L. Byer, A laser-locked cavity ring-down spectrometer employing an analog detection scheme. Rev. Sci. Instrum. 71(2), 347–353 (2000)

    Article  ADS  Google Scholar 

  47. J.B. Paul, L. Lapson, J.G. Anderson, Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment. Appl. Opt. 40(27), 4904–4910 (2001)

    Article  ADS  Google Scholar 

  48. K.D. Skeldon, G.M. Gibson, C.A. Wyse, L.C. McMillan, S.D. Monk, C. Longbottom, M.J. Padgett, Development of high-resolution real-time sub-ppb ethane spectroscopy and some pilot studies in life science. Appl. Opt. 44(22), 4712–4721 (2005)

    Article  ADS  Google Scholar 

  49. S.D. Dyer, K.B. Rochford, A.H. Rose, Fast and accurate low-coherence interferometric measurements of fiber Bragg grating dispersion and reflectance. Opt. Express 5(11), 262–266 (1999)

    Article  ADS  Google Scholar 

  50. M.J. Thorpe, R.J. Jones, K.D. Moll, J. Ye, R. Lalezari, Precise measurements of optical cavity dispersion and mirror coating properties via femtosecond combs. Opt. Express 13(3), 882–888 (2005)

    Article  ADS  Google Scholar 

  51. N. Uehara, A. Ueda, K. Ueda, H. Sekiguchi, T. Mitake, K. Nakamura, N. Kitajima, I. Kataoka, Ultralow-loss mirror of parts-in-106 level at 1064 nm. Opt. Lett. 20(6), 530–532 (1995)

    Article  ADS  Google Scholar 

  52. K. An, B.A. Sones, C. Fang-Yen, R.R. Dasari, M.S. Feld, Optical bistability induced by mirror absorption: measurement of absorption coefficients at the sub-ppm level. Opt. Lett. 22(18), 1433–1435 (1997)

    Article  ADS  Google Scholar 

  53. C.J. Hood, H.J. Kimble, J. Ye, Characterization of high-finesse mirrors: loss, phase shifts, and mode structure in an optical cavity. Phys. Rev. A 64 (2001) Article 033804

    Google Scholar 

  54. G. Li, Y. Zhang, Y. Li, X. Wang, J. Zhang, J. Wang, T. Zhang, Precision measurement of ultralow losses of an asymmetric optical microcavity. Appl. Opt. 45(29), 7628–7631 (2006)

    Article  ADS  Google Scholar 

  55. M. Borselli, T.J. Johnson, O. Painter, Accurate measurement of scattering and absorption loss in microphotonic devices. Opt. Lett. 32(20), 2954–2956 (2007)

    Article  ADS  Google Scholar 

  56. G. Farca, S.I. Shopova, A.T. Rosenberger, Cavity-enhanced laser absorption spectroscopy using microresonator whispering-gallery modes. Opt. Express 15(25), 17443–17448 (2007)

    Article  ADS  Google Scholar 

  57. J. Poirson, F. Bretenaker, M. Vallet, A. Le Floch, Analytical and experimental study of ringing effects in a Fabry–Perot cavity. Application to the measurement of high finesses. JOSA B 14(11), 2811–2817 (1997)

    Article  ADS  Google Scholar 

  58. C.R. Bucher, K.K. Lehmann, D.F. Plusquellic, G.T. Fraser, Doppler-free nonlinear absorption in ethylene by use of continuous-wave cavity ringdown spectroscopy. Appl. Opt. 39(18), 3154–3164 (2000)

    Article  ADS  Google Scholar 

  59. I. Debecker, A.K. Mohamed, D. Romanini, High-speed cavity ringdown spectroscopy with increased spectral resolution by simultaneous laser and cavity tuning. Opt. Express 13(8), 2906–2915 (2005)

    Article  ADS  Google Scholar 

  60. Y. He, B.J. Orr, Continuous-wave cavity ringdown absorption spectroscopy with a swept-frequency laser: rapid spectral sensing of gas-phase molecules. Appl. Opt. 44(31), 6752–6761 (2005)

    Article  ADS  Google Scholar 

  61. J. Courtois, A.K. Mohamed, D. Romanini, High-speed off-axis Cavity Ring-Down Spectroscopy with a re-entrant configuration for spectral resolution enhancement. Opt. Express 18(5), 4845–4858 (2010)

    Article  ADS  Google Scholar 

  62. M.C. Kuoa, Y.R. Lina, W.A.A. Syeda, J.T. Shya, Precision Continuous Wave Cavity Ringdown Spectroscopy of CO2 at 1064 nm. Opt. Spectrosc. 108(1), 29–36 (2010)

    Article  ADS  Google Scholar 

  63. C. Froehly, A. Lacourt, J.C. Viénot, Time impulse response and time frequency response of optical pupils: experimental confirmations and applications. Nouv. Rev. Opt 4(4), 183–196 (1973)

    Article  Google Scholar 

  64. A.M. Weiner, D.E. Leaird, D.H. Reitze, E.G. Paek, Femtosecond spectral holography. IEEE J. Quantum Electron. 28(10), 2251–2261 (1992)

    Article  ADS  Google Scholar 

  65. L. Lepetit, G. Chériaux, M. Joffre, Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy. J. Opt. Soc. Am. B 12(12), 2467–2474 (1995)

    Article  ADS  Google Scholar 

  66. D. Meshulach, D. Yelin, Y. Silberberg, White light dispersion measurements by one- and two-dimensional spectral interference. IEEE J. Quantum Electron. 33(11), 1969–1974 (1997)

    Article  ADS  Google Scholar 

  67. A. Börzsönyia, A.P. Kovácsa, M. Görbea, K. Osvaya, Advances and limitations of phase dispersion measurement by spectrally and spatially resolved interferometry. Opt. Commun. 281(11), 3051–3061 (2008)

    Article  Google Scholar 

  68. I. Pupeza, X. Gu, E. Fill, T. Eidam, J. Limpert, A. T¨unnermann, F. Krausz, T. Udem, Highly sensitive dispersion measurement of a high-power passive optical resonator using spatial-spectral interferometry. Opt. Express 18(25), 26184–26195 (2010)

    Article  ADS  Google Scholar 

  69. A. Schliesser, C. Gohle, T. Udem, T.W. H¨ansch, Complete characterization of a broadband high-finesse cavity using an optical frequency comb. Opt. Express 14(13), 5975–5983 (2006)

    Article  ADS  Google Scholar 

  70. B.L. Danielson, C.D. Whittenberg, Guide-wave reflectometry with micrometer resolution. Appl. Opt. 26(14), 2836–2842 (1987)

    Article  ADS  Google Scholar 

  71. K. Takada, I. Yokohama, K. Chida, J. Noda, New measurement system for fault location in optical waveguide devices based on an interferometric technique. Appl. Opt. 26(9), 1603–1606 (1987)

    Article  ADS  Google Scholar 

  72. M. Billardon, M.E. Couprie, J.M. Ortega, M. Velghe, Fabry-Perot effects in the exponential decay and phase shift reflectivity measurement methods. Appl. Opt. 30(3), 344–351 (1991)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bukshtab .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bukshtab, M. (2012). Measurements in Passive Resonators. In: Applied Photometry, Radiometry, and Measurements of Optical Losses. Springer Series in Optical Sciences, vol 163. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2165-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2165-4_8

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2164-7

  • Online ISBN: 978-94-007-2165-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics