Skip to main content

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 163))

  • 1681 Accesses

Abstract

Practically every method of multiple interaction of light with a test object considered so far enhances the sensitivity to a given low optical loss via the enhanced measured signal owing to an increased number of light interactions. Among other phenomena, generation of laser light in any active medium with a low gain factor is stipulated by the very same multiple reflections in an open laser resonator with a high quality factor. Since the power and energy parameters of stimulated emission are defined by correlations of laser gain and attenuation, corresponding to every pass via that open laser resonator, one can expect high sensitivity of laser emission to the presence in its resonant cavity of any embedded optical loss. Such excessive sensitivity can be manifested via changes of the laser power or energy output in a broad spectral domain of its active medium amplification or as spectrally selective optical losses in narrow spectral intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th edn. (Pergamon, Oxford, 1984); 7th ed. (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  2. A. Yariv, Quantum electronics, 3rd edn. (Wiley, New York, 1989)

    Google Scholar 

  3. B.I. Stepanov (ed.), Method of design calculations for optical quantum generators, vol. 1 (Nauka & Technika, Minsk, 1966)

    Google Scholar 

  4. H.W. Kogelnik, T. Li, Laser beams and resonators. Appl. Opt. 5(10), 1550–1567 (1966)

    Article  ADS  Google Scholar 

  5. A.E. Siegman, Lasers (University Science, Mill Valley, 1986)

    Google Scholar 

  6. H.A. Macleod, Thin-Film Optical Filters, 3rd edn. (Institute of Physics Publishing, Tucson, 2001)

    Book  Google Scholar 

  7. F. Mayinger, Optical Measurement Techniques (Springer, Berlin, 1994); O. Feldmann, F. Mayinger, Optical Measurements: Techniques and Applications (Springer, Berlin, 2001)

    Google Scholar 

  8. A. Yariv, P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, New York, 2002); Photonics: Optical Electronics in Modern Communication, 6th edn. (Oxford University Press, Oxford, 2006)

    Google Scholar 

  9. A.B. Melnikov, Determination of transmittance of low-dense plasma by the intracavity method. J. Appl. Spectrosc. 6(6), 821–823 (1967)

    Google Scholar 

  10. H.P. Brandli, Method for measuring of small optical losses using a He-Ne laser. Rev. Sci. Instrum. 39(4), 583–587 (1968)

    Article  ADS  Google Scholar 

  11. V.S. Burakov, V.V. Djukovsky, A.A. Stavrov, An increase of the dynamic range of the intra-cavity measurements of optical densities. Quantum Electron. 5(1), 13–19 (1978)

    Google Scholar 

  12. V. Sanders, High-precision reflectivity measurement technique for low-loss laser mirrors. Appl. Opt. 16(1), 19–20 (1977)

    Article  ADS  Google Scholar 

  13. J.S. Shirk, T.D. Harris, J.W. Mitchell, Laser intracavity spectrophotometer. Anal. Chem. 52(11), 1701–1705 (1980)

    Article  Google Scholar 

  14. A.L. Bloom, Gas Lasers (New York, Wiley, 1968)

    Google Scholar 

  15. N. Konjevic, M. Kokovic, He-Ne laser for intra-cavity enhanced absorption measurement. Spectrosc. Lett. 7(12), 615–620 (1974)

    Article  ADS  Google Scholar 

  16. V.I. Makhorin, A.I. Popov, E.D. Protsenko, Influence of intra-resonator losses on power of a He-Ne laser at 3.39 μm region. J. Appl. Spectrosc. 27(3), 418–422 (1977)

    Article  Google Scholar 

  17. A.S. Burmistrov, A.I. Popov, Study of a sensitivity of the intra-cavity method of determination of low optical losses in a cw gas laser. J. Appl. Spectrosc. 37(2), 205–209 (1982)

    Google Scholar 

  18. A.V. Lebedev, A.I. Popov, Computation of a sensitivity of method of low optical absorption study in a cw laser with internal cavity and narrow spectrum. J. Appl. Spectrosc. 44(2), 219–225 (1986)

    Article  Google Scholar 

  19. L.A. Pakhomyucheva, E.A. Sviridenkov, A.F. Sychkov, L.V. Titova, S.S. Kurilov, The linear structure of spectrums generated by solid-state lasers. Lett. JETF 12(2), 60–63 (1970)

    Google Scholar 

  20. B.M. Baev, V.P. Dyubov, E.A. Sviridenkov, Increasing of sensitivity of the intra-cavity laser spectroscopy using Nd: glass laser. Quantum Electron. 12(12), 2490–2491 (1985)

    Google Scholar 

  21. N.C. Peterson, M.J. Kurylo, W. Braun, A.M. Bass, R.A. Keller, Enhancement of absorption spectra by dye-laser quenching. J. Opt. Soc. Am. 61(6), 746–750 (1971); R.A. Keller, E.F. Zalewski, N.C. Peterson, Enhancement of absorption spectra by die-laser quenching, II. J. Opt. Soc. Am. 62(3), 319–326 (1972)

    Google Scholar 

  22. V.I. Baev, T.P. Belikova, E.A. Sviridenkov, A.F. Sychkov, Intra-cavity spectroscopy with cw and quasi-cw lasers. JTF 74(1), 43–56 (1978)

    Google Scholar 

  23. A.A. Kachanov, T.V. Plakhotnik, Intracavity spectrometer with a ring traveling-wave dye laser: reduction of detection limit. Opt. Commun. 47(4), 257–261 (1983)

    Article  ADS  Google Scholar 

  24. A.V. Adamushko, M.V. Belokon, A.I. Rubinov, Intracavity spectrometer based on cw dye lasers. J. Appl. Spectrosc. 28(3), 417–420 (1978)

    Article  Google Scholar 

  25. D.A. Smith, D.I. Shernoff, Simple measurement of gain and loss in ultralow loss optical resonators. Appl. Opt. 24(12), 1722–1723 (1985)

    Article  ADS  Google Scholar 

  26. N. Dutta, R.T. Warner, G.J. Wolga, Sensitivity enhancement of a spin-flip Raman laser absorption spectrometer through use of an intracavity absorption cell. Opt. Lett. 1(5), 155–157 (1977)

    Article  ADS  Google Scholar 

  27. E.N. Antonov, A.A. Kachanov, V.R. Mironenko, T.V. Plakhotnik, Dependence of the sensitivity of intracavity laser spectroscopy on generation parameters. Opt. Commun. 46(2), 126–130 (1983)

    Article  ADS  Google Scholar 

  28. S.J. Harris, Intracavity laser spectroscopy: an old field with new prospects for combustion diagnostics. Appl. Opt. 23(9), 1311–1318 (1984)

    Article  ADS  Google Scholar 

  29. F. Stoeckel, G.H. Atkinson, Time evolution of a broadband quasi-cw dye laser: limitations of sensitivity in intracavity laser spectroscopy. Appl. Opt. 24(21), 3591–3597 (1985)

    Article  ADS  Google Scholar 

  30. A. O’Keefe, D.A.G. Deacon, Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources. Rev. Sci. Instrum. 59(12), 2544–2551 (1988)

    Article  ADS  Google Scholar 

  31. R. Engeln, G. Meijer, A Fourier transform cavity ringdown spectrometer. Rev. Sci. Instrum. 67(8), 2708–2714 (1996)

    Article  ADS  Google Scholar 

  32. P. Zalicki, R.N. Zare, Cavity ring-down spectroscopy for quantitative absorption measurements. J. Chem. Phys. 102(7), 2708–2717 (1995)

    Article  ADS  Google Scholar 

  33. K.K. Lehman, D. Romanini, The superposition principle and cavity ring-down spectroscopy. J. Chem. Phys. 105(23), 10263–10277 (1996)

    Article  ADS  Google Scholar 

  34. J.T. Hodges, J.P. Looney, R.D. van Zee, Response of a ring-down cavity to an arbitrary excitation. J. Chem. Phys. 105(23), 10278–10288 (1996)

    Article  ADS  Google Scholar 

  35. J.T. Hodges, J.P. Looney, R.D. van Zee, Laser bandwidth effects in quantitative cavity ring-down spectroscopy. Appl. Opt. 35(21), 4112–4116 (1996)

    Article  ADS  Google Scholar 

  36. M. Billardon, M.E. Couprie, J.M. Ortega, M. Velghe, Fabry-Perot effects in the exponential decay and phase shift reflectivity measurement methods. Appl. Opt. 30(3), 344–351 (1991)

    Article  ADS  Google Scholar 

  37. R.D. van Zee, J.T. Hodges, J.P. Looney, Pulsed, single-mode cavity ringdown spectroscopy. Appl. Opt. 38(18), 3951–3960 (1999)

    Article  ADS  Google Scholar 

  38. J.L. Remo, Reflection losses for symmetrically perturbed curved reflectors in open resonators. Appl. Opt. 20(17), 2997–3002 (1981)

    Article  ADS  Google Scholar 

  39. H. Naus, I.H.M. van Stokkum, W. Hogervorst, W. Ubachs, Quantitative analysis of decay transients applied to a multimode pulsed cavity ringdown experiment. Appl. Opt. 40(24), 4416–4426 (2001)

    Article  ADS  Google Scholar 

  40. See reference [3.83]

    Google Scholar 

  41. K.K. Lehmann, Ring-down cavity spectroscopy cell using continuous wave excitation for trace species detection, U.S. Patent 5,528,040, 18 June 1996

    Google Scholar 

  42. B.A. Paldus, C.C. Harb, T.G. Spence, B. Wilke, J. Xie, J.S. Harris, R.N. Zare, Cavity-locked ringdown spectroscopy. J. Appl. Phys. 83(8), 3991–3997 (1998)

    Article  ADS  Google Scholar 

  43. J.W. Hahn, Y.S. Yoo, J.Y. Lee, J.W. Kim, H.-W. Lee, Cavity ringdown spectroscopy with a continuous-wave laser: calculation of coupling efficiency and a new spectrometer design. Appl. Opt. 38(9), 1859–1866 (1999)

    Article  ADS  Google Scholar 

  44. J.W. Kim, Y.S. Yoo, J.Y. Lee, J.B. Lee, J.W. Hahn, Uncertainty analysis of absolute concentration measurement with continuous-wave cavity ringdown spectroscopy. Appl. Opt. 40(30), 5509–5516 (2001)

    Article  ADS  Google Scholar 

  45. J.Y. Lee, H.-W. Lee, J.W. Kim, Y.S. Yoo, J.W. Hahn, Measurement of ultralow supermirror birefringence by use of the polarimetric differential cavity ringdown technique. Appl. Opt. 39(12), 1941–1945 (2000)

    Article  ADS  Google Scholar 

  46. G. Totschnig, D.S. Baer, J. Wang, F. Winter, H. Hofbauer, R.K. Hanson, Multiplexed continuous-wave diode-laser cavity ringdown measurements of multiple species. Appl. Opt. 39(12), 2009–2016 (2000)

    Article  ADS  Google Scholar 

  47. N.J. van Leeuwen, J.C. Diettrich, A.C. Wilson, Periodically locked continuous-wave cavity ringdown spectroscopy. Appl. Opt. 42(18), 3670–3677 (2003)

    Article  ADS  Google Scholar 

  48. A. Schocker, K. Kohse-Höinghaus, A. Brockhinke, Quantitative determination of combustion intermediates with cavity ring-down spectroscopy: systematic study in propene flames near the soot-formation limit. Appl. Opt. 44(31), 6660–6672 (2005)

    Article  ADS  Google Scholar 

  49. R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B 31(2), 97–105 (1983)

    Article  ADS  Google Scholar 

  50. K. An, C. Yang, R.R. Dasari, M.S. Feld, Cavity ring-down technique and its application to the measurement of ultraslow velocities. Opt. Lett. 20(9), 1068–1070 (1995)

    Article  ADS  Google Scholar 

  51. M. Rakhmanov, Doppler-induced dynamics of fields in Fabry–Perot cavities with suspended mirrors. Appl. Opt. 40(12), 1942–1949 (2001)

    Article  ADS  Google Scholar 

  52. S.M. Ball, R.L. Jones, Broad-band cavity ring-down spectroscopy. Chem. Rev. 103(12), 5239–5262 (2003)

    Article  Google Scholar 

  53. A.A. Ruth, J. Orphal, S.E. Fiedler, Fourier-transform cavity-enhanced absorption spectroscopy using an incoherent broadband light source. Appl. Opt. 46(17), 3611–3616 (2007)

    Article  ADS  Google Scholar 

  54. J.M. Langridge, T. Laurila, R.S. Watt, R.L. Jones, C.F. Kaminski, J. Hult, Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source. Opt. Express 16(14), 10178–10188 (2007)

    Article  ADS  Google Scholar 

  55. K.K. Lehmann, P.S. Johnston, P. Rabinowitz, Brewster angle prism retroreflectors for cavity enhanced spectroscopy. Appl. Opt. 48(16), 2967–2978 (2009)

    Article  ADS  Google Scholar 

  56. C. Petermann, P. Fischer, Actively coupled cavity ringdown spectroscopy with low-power broadband sources. Opt. Express 19(11), 10164–10173 (2011)

    Article  ADS  Google Scholar 

  57. Y. Le Grand, A. Le Floch, Measurement of residual reflectivities using the two eigenstates of a passive cavity. Appl. Opt. 27(23), 4925–4930 (1988)

    Article  ADS  Google Scholar 

  58. E.R. Crosson, P. Haar, G.A. Marcus, H.A. Schwettman, B.A. Paldus, T.G. Spence, R.N. Zare, Pulse-stacked cavity ring-down spectroscopy. Rev. Sci. Instrum. 70(1), 4–10 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bukshtab .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bukshtab, M. (2012). Laser Spectroscopy. In: Applied Photometry, Radiometry, and Measurements of Optical Losses. Springer Series in Optical Sciences, vol 163. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2165-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2165-4_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2164-7

  • Online ISBN: 978-94-007-2165-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics