Skip to main content

Conventional Loss-Measurement Techniques

  • Chapter
  • First Online:
Applied Photometry, Radiometry, and Measurements of Optical Losses

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 163))

  • 1676 Accesses

Abstract

When measuring relative changes of the intensity of radiation transmitted by a layer of a substance under study, one can identify, to a certain extent, practically any type of optical loss: reflectance of the substance borders with the surroundings, scattering and absorption factors of the entire irradiated object itself, etc. However, there are only a limited number of practical ways for measuring an internal substance loss. Likely procedures include detection of the front and back surface attenuation factors of the substance layer and subtracting these factors from the entire layer transmittance or exclusion of surface losses by comparing several samples of that substance presuming equal surface losses for the distinct samples and identifying the total internal bulk attenuation of the substance via the length difference of the samples measured.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Strong, Procedures in Experimental Physics (Prentice-Hall, Englewood Cliffs, 1942)

    Google Scholar 

  2. M.M. Gurevich, Introduction to Photometry (Energia, Leningrad, 1968; 2nd edn., 1983)

    Google Scholar 

  3. M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th edn. (Pergamon, Oxford, 1984); 7th ed. (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  4. H.E. Bennett, W.F. Koehler, Precision measurement of absolute specular reflectance with minimized systematic errors. J. Opt. Soc. Am. 50(1), 1–6 (1960)

    Article  ADS  Google Scholar 

  5. H.E. Bennett, J.M. Bennett, in Physics of Thin Films, ed. by G. Xass, R.E. Thun, vol. 4 (Academic, New York, 1967), pp. 41–57

    Google Scholar 

  6. H.E. Bennett, J.O. Porteus, Relation between surface roughness and specular reflectance at normal incidence. J. Opt. Soc. Am. 51(2), 123–129 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  7. C.A. Depew, R.D. Weir, Surface roughness determination by the measurement of reflectance. Appl. Opt. 10(4), 969–970 (1971)

    Article  ADS  Google Scholar 

  8. H.C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981)

    Google Scholar 

  9. M. Francon, Laser Speckle and Applications in Optics (Academic, New York, 1979)

    Google Scholar 

  10. K.C. Kao, T.V. Davis, Spectrophotometric studies of ultra low loss optical glasses I: Single beam method. J. Sci. Instrum. Ser. 2 1(11), 1063–1068 (1968)

    Article  ADS  Google Scholar 

  11. M.W. Jones, K.C. Kao, Spectrophotometric studies of ultra low loss optical glasses II: Double beam method. J. Sci. Instrum. Ser. 2 2(4), 331–335 (1969)

    Article  ADS  Google Scholar 

  12. P. J. R. Laybourn, W. A. Gambling, and D. T. Jones, Measurement of attenuation in los-loss optical glasses, Optoelectronics, 1971, Vol. 3, No. 8, pp. 137 – 144; J. P. Dakin and W. A. Gambling, Transmission measurements in optical glass with an improved twin-beam spectrophotometer, Opto-Electronics, 1973, Vol. 5, No. 4, pp. 335–344.

    Google Scholar 

  13. A.I. Kolyadin, A.A. Malygina, Use of least-square method for determining the extinction coefficient of high-transmission glass. J. Opt. Technol. 44(11), 656–658 (1977)

    Google Scholar 

  14. S. Bosch, J. Roca, A method for the measurement of reflectances of spherical surfaces. Meas. Sci. Technol. 4, 190–192 (1993)

    Article  ADS  Google Scholar 

  15. G. Boivin, J.-M. Theriault, Reflectometer for precise measurement of absolute specular reflectance at normal incidence. Rev. Sci. Instrum. 52(7), 1001–1002 (1981)

    Article  ADS  Google Scholar 

  16. A. Bittar, J.D. Hamlin, High-accuracy true normal-incidence absolute reflectometer. Appl. Opt. 23(22), 4054–4057 (1984)

    Article  ADS  Google Scholar 

  17. K. Al-Marzouk, M. Jacobson, R. Parcs, M. Rodgers, New absolute reflectometer. Opt. Eng. 21(6), 976–978 (1982)

    Google Scholar 

  18. V.R. Weidner, J.J. Hsia, NBS specular reflectometer−spectrophotometer. Appl. Opt. 19(8), 1268–1273 (1980)

    Article  ADS  Google Scholar 

  19. C. Castelini, G. Emiliani, E. Masetti, P. Poggi, P.P. Polato, Characterization and calibration of a variable angle absolute reflectometer. Appl. Opt. 29(4), 538–543 (1990)

    Article  ADS  Google Scholar 

  20. J.M. Bennett, E.J. Ashley, Calibration of instruments measuring reflectance and transmittance. Appl. Opt. 11(8), 1749–1755 (1972)

    Article  ADS  Google Scholar 

  21. A.Ya. Hairullina, L.Ch. Neverovich, A setup for measurements of back-scattering from laser mirrors (Institute of Physics AN BSSR, Minsk, 1974), Selected Reprint

    Google Scholar 

  22. P.J. Laybourn, J.P. Dakin, W.A. Gambling, A photometer to measure light scattering in optical glass. Optoelectronics 2(1), 36–42 (1970)

    Google Scholar 

  23. J.M. Elson, J.P. Rahn, J.M. Bennett, Relationship of the total integrated scattering from multilayer coated optics to angle of incidence, polarization, correlation length, and roughness cross-correlation properties. Appl. Opt. 22(20), 3207–3220 (1983)

    Article  ADS  Google Scholar 

  24. A.C. Toporets, Light reflection by rough surface. J. Opt. Technol. 46(1), 35–48 (1979)

    Google Scholar 

  25. W.R. Blevin, J. Geist, Infrared reflectometry with a cavity-shaped pyroelectric detector. Appl. Opt. 13(10), 2212–2217 (1974)

    Article  ADS  Google Scholar 

  26. P. Roche, E. Pelletier, Characterization of optical surfaces by measurement of scattering distribution. Appl. Opt. 23(20), 3561–3566 (1984)

    Article  ADS  Google Scholar 

  27. B.A. Mehmetli, K. Takahashi, S. Sato, Direct measurement of reflectance from aluminum alloys during CO2 laser welding. Appl. Opt. 35(18), 3237–3242 (1996)

    Article  ADS  Google Scholar 

  28. B.T. McGuckin, D.A. Haner, R.T. Menzies, C. Esproles, A.M. Brothers, Directional reflectance characterization facility and measurement methodology. Appl. Opt. 35(24), 4827–4834 (1996)

    Article  ADS  Google Scholar 

  29. D.G. Goebel, B.P. Caldwell, H.K. Hammond III, Use of an auxiliary sphere with a spectroreflectometer to obtain absolute reflectance. J. Opt. Soc. Am. 56(6), 783–788 (1966)

    Article  ADS  Google Scholar 

  30. S.M. Jaffe, W.M. Yen, Phase-locked optical choppers. Rev. Sci. Instrum. 64(2), 342–345 (1993)

    Article  ADS  Google Scholar 

  31. W. Smith, Reflectometer for laser mirrors with accuracy better than 10−4. Appl. Opt. 17(16), 2476–2477 (1978)

    Article  ADS  Google Scholar 

  32. R.E. Lindquist, A.W. Ewald, Optical constants from reflectance ratios by a geometric construction. J. Opt. Soc. Am. 53(2), 247–249 (1963)

    Article  ADS  Google Scholar 

  33. W.R. Hunter, Optical constants of metals in the extreme ultraviolet. I. A modified critical-angle technique for measuring the index of refraction of metals in the extreme ultraviolet. J. Opt. Soc. Am. 54(1), 15–19 (1964)

    Article  ADS  Google Scholar 

  34. R.F. Potter, Analytical determination of optical constants based on the polarized reflectance at a dielectric-conductor interface. J. Opt. Soc. Am. 54(7), 904–906 (1964)

    Article  ADS  Google Scholar 

  35. E. Schmidt, Simple method for the determination of optical constants of absorbing materials. Appl. Opt. 8(9), 1905–1908 (1969)

    Article  ADS  Google Scholar 

  36. T.E. Darcie, M.S. Whalen, Determination of optical constants using pseudo-Brewster angle and normal incidence reflectance measurements. Appl. Opt. 23(8), 1130–1131 (1984)

    Article  ADS  Google Scholar 

  37. K. Ogusu, K. Suzuki, H. Nishio, Simple and accurate measurement of the absorption coefficient of an absorbing plate by use of the Brewster angle. Opt. Lett. 31(7), 909–911 (2006)

    Article  ADS  Google Scholar 

  38. D. Roßkamp, F. Truffer, S. Bolay, M. Geiser, Forward scattering measurement device with a high angular resolution. Opt. Express 15(5), 2683–2690 (2007)

    Article  ADS  Google Scholar 

  39. F.D.J. Brunner, A. Schneider, P. Günter, A terahertz time-domain spectrometer for simultaneous transmission and reflection measurements at normal incidence. Opt. Express 17(23), 20684–20693 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bukshtab .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bukshtab, M. (2012). Conventional Loss-Measurement Techniques. In: Applied Photometry, Radiometry, and Measurements of Optical Losses. Springer Series in Optical Sciences, vol 163. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2165-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2165-4_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2164-7

  • Online ISBN: 978-94-007-2165-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics