Skip to main content

Propagation Losses in Fibers and Waveguides

  • Chapter
  • First Online:
Applied Photometry, Radiometry, and Measurements of Optical Losses

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 163))

  • 1756 Accesses

Abstract

In view of the very small propagation losses for light guided via high-purity optical fibers drawn from highly transparent glasses with linear attenuation coefficients below 10−4–10−5 cm−1, one could think of the necessity to develop extremely sensitive measurement procedures detecting internal losses in such fibers. Nevertheless, especially high sensitivity is not be required since customary lengths of low-loss fibers, particularly for high-speed optical communication, are substantially longer than the corresponding lengths of the glass preforms from which these fibers are drawn. Even if at any specific propagation wavelength such a fiber has a linear attenuation coefficient μ = 1 dB/km = 2.3⋅10−6 cm−1, at a length of \( \ell = {1}\; {\rm{km}} \) the total fiber attenuation \( \mu \ell \) becomes low: 1 dB, but it is equivalent to light attenuation by nearly 26%. In a respective case of \( \mu \ell = 0.{1}\;{\rm{dB}} \) or \( \mu \ell = 0.0{1} \), the entire attenuation factor correspondingly drops to 2% and 0.2%. Only when an attempt is made to evaluate the amount of optical radiation absorbed or scattered by a short section of such a fiber should the sensitivity of that detection be substantially increased. This situation is essentially identical to any comparable detection method for similar extension of the measurement locality (see, e.g., Chaps. 8 and 9).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.A. Bukshtab, Measurements of Low Optical Losses (Energoatomizdat, Leningrad, 1988)

    Google Scholar 

  2. M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th edn. (Pergamon, Oxford, 1984); 7th ed. (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  3. Principles of Light Measurements, CIE Publication No. 18, 1970; International Lighting Vocabulary, CIE Publication No. 17, 1970; International Electrotechnical Vocabulary, Chapter 845, Lightning, 1982.

    Google Scholar 

  4. F. Rotter, View into the integrating sphere through the observation window. Appl. Opt. 10(12), 2629–2638 (1971)

    Article  ADS  Google Scholar 

  5. M. Bukhshtab, The influence of surface reflections on computation and measurement of retardance, Meas. Sci. Technol.6(7), 910–920 (1995); erratum: 7, 1093 (1996)

    Google Scholar 

  6. H.A. Macleod, Thin-Film Optical Filters, 3rd edn. (Institute of Physics Publishing, Tucson, 2001)

    Book  Google Scholar 

  7. A.W. Snyder, J.D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), p. 1996

    Google Scholar 

  8. P.J. Laybourn, J.P. Dakin, W.A. Gambling, A photometer to measure light scattering in optical glass. Optoelectronics 2(1), 36–42 (1970)

    Google Scholar 

  9. P.J. Severin, Calorimetric measurements of weakly absorbing materials: theory. Appl. Opt. 18(10) 1546–1554 (1976); P.J. Severin, H. van Esveld, Calorimetric measurements of the absorption coefficient of fiber quality glass: experiment. Appl. Opt. 20(10) 1833–1839 (1981)

    Google Scholar 

  10. J.E. Midwinter, Optical Fibers for Transmission (Wiley, New York, 1979)

    Google Scholar 

  11. M.A. Bukhshtab, Absolute measurements of small specular reflection coefficients. Meas. Tech. 30(3), 218–220 (1987)

    Article  Google Scholar 

  12. M.A. Bukshtab, Regarding correlations among measurements of low optical losses (Central Institute “Information,”, Moscow, 1987)

    Google Scholar 

  13. M. A. Bukhshtab, Measurements of low optical loss in reflected radiation, Svetotekhnika, Moscow, 1987, No. 6, pp. 5 - 6.

    Google Scholar 

  14. M.A. Bukhshtab, V.N. Koromislichenko, A.Y. Kirillov, Two-channel system for determination of small optical losses of laser radiation with an amplitude resolution of more than 10,000. Instruments & Experimental Techniques 31(2), 443–446 (1988)

    Google Scholar 

  15. D. Marcuse, Principles of Optical Fiber Measurements (Academic Press, New York, 1981)

    Google Scholar 

  16. M.K. Barnoski, S.D. Personick, Measurements in Fiber Optics. Proc. IEEE 66(4), 429–441 (1978)

    Article  Google Scholar 

  17. D.B. Keck, P.C. Shultz, F. Zimar, Attenuation of multimode glass optical waveguides. Appl. Phys. Lett. 21(5), 215–217 (1972)

    Article  ADS  Google Scholar 

  18. A.R. Tynes, Integrating cube scattering detector. Appl. Opt. 9(12), 2706–2710 (1970)

    Article  ADS  Google Scholar 

  19. D. Marcuse, Loss analysis of single-mode fiber splices. Bell. Syst. Tech. J. 56, 703–718 (1977)

    Article  Google Scholar 

  20. M. Tachikura, Internal loss measurement technique for optical devices equipped with fiber connectors at both ends, Engineering & Laboratory Notes, in Opt. Photon. News, 1995, Vol. 6, No. 2, pap. 5.

    Google Scholar 

  21. A. Zaganiaris, Simultaneous measurement of absorption and scattering losses in bulk glasses and optical fibers by a microcalorimetric method. Appl. Phys. Lett. 25(6), 345–347 (1974)

    Article  ADS  Google Scholar 

  22. E.T. Stone, W.B. Gardner, C.R. Lovelace, Calorimetric measurement of absorption and scattering losses in optical fibers. Opt. Lett. 2(2), 48–50 (1978)

    Article  ADS  Google Scholar 

  23. A.R. Tynes, A.D. Pearson, D.L. Bisbee, Loss mechanisms and measurements in clad glass fibers and bulk glass. J. Opt. Soc. Am. 61(2), 143–153 (1971)

    Article  ADS  Google Scholar 

  24. S. Huard, D. Chardon, Measure de l’absorption d’une fibre optique par effet phot-acoustique. Opt. Commun. 39(1–2), 59–63 (1981)

    Article  ADS  Google Scholar 

  25. G. Ghosh, S. Kachi, Y. Sasaki, M. Kimura, New method to measure scattering and total losses of optical fibres. Electron. Lett. 21(16), 670–671 (1985)

    Article  Google Scholar 

  26. X. Zhou, S. Zhu, H. Shen, and Muqing Liu, A new spatial integration method for luminous flux determination of light-emitting diodes, Meas. Sci. Technol., 2010, Vol. 21, article 105303, 6 pages.

    Google Scholar 

  27. R. Olshansky, S.M. Oaks, Differential mode attenuation measurements in graded-index fibers. Appl. Opt. 17(11), 1830–1835 (1978)

    Article  ADS  Google Scholar 

  28. L.E. Busse, G.H. McCabe, I.D. Aggarwal, Wavelength dependence of the scattering loss in fluoride optical fibers. Opt. Lett. 15(8), 423–424 (1990)

    Article  ADS  Google Scholar 

  29. N. Mekada, A. Al-Hamdan, T. Murakami, and M. Miyoshi, New direct measurement technique of polarization dependent loss with high resolution and repeatability, Symposium on Optical Fiber Measurements, Technical Digest, 1994, NIST Special Publication 864, pp. 189–192.

    Google Scholar 

  30. R.C. Jones, A new calculus for the treatment of optical systems. VI. Experimental determination of the matrix. J. Opt. Soc. Am. 37(2), 110–112 (1947)

    Article  ADS  Google Scholar 

  31. B.L. Heffner, Deterministic, analytically complete measurement of polarization-dependent transmission through optical devices. IEEE Photon. Technol. Lett. 4(9), 451–454 (1992)

    Article  ADS  Google Scholar 

  32. B. L. Heffner, Recent progress in polarization measurement techniques, Symposium on Optical Fiber Measurements, Technical Digest, 1992, NIST Special Publication 839, pp. 131–136.

    Google Scholar 

  33. N. Gisin, Statistics of polarization dependent losses. Opt. Commun. 114(8), 399–405 (1995)

    Article  ADS  Google Scholar 

  34. A. Elamari, N. Gisin, B. Perny, H. Zbinden, and C. Zimmer, Polarization dependent loss of concatenated passive optical components, Symposium on Optical Fiber Measurements, Technical Digest, 1996, NIST Special Publication 905, pp. 163–166.

    Google Scholar 

  35. M. Bukhshtab, Interferometric noise in fiber transmission systems incorporating birefringent substances, Symposium on Optical Fiber Measurements, Technical Digest, 1996, NIST Special Publication 905, pp. 211–214.

    Google Scholar 

  36. D. Schicketanz, Method and apparatus for measuring the distance of a discontinuity of glass fiber from one end of the fiber, US Patent 4,021,121; 3 May 1977; Deutche Auslegungsschrift No. 2451654 from 30 October 1974.

    Google Scholar 

  37. M.K. Barnoski, S.M. Jensen, Fiber waveguides: A novel technique for investigating attenuation characteristics. Appl. Opt. 15(9), 2112–2115 (1976)

    Article  ADS  Google Scholar 

  38. S.D. Personick, Photon probe - An optical fiber time-domain reflectometer. Bell Syst. Tech. J. 56(3), 355–366 (1977)

    Article  Google Scholar 

  39. R.I. MacDonald, Frequency domain optical reflectometer. Appl. Opt. 20(10), 1840–1844 (1981)

    Article  ADS  Google Scholar 

  40. W. Eickhoff, R. Ulrich, Optical frequency reflectometry in single-mode fiber. Appl. Phys. Lett. 39(9), 693–695 (1981)

    Article  ADS  Google Scholar 

  41. D. Uttam, B. Culshaw, Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique. J. Lightwave Technol. LT-3(5), 971–977 (1985)

    Article  ADS  Google Scholar 

  42. F. P. Kapron, R. D. Maurer, and M. P. Teter, Theory of backscattering effects in waveguides, Appl. Opt., 1972, Vol. 11, No. 6, pp. 1352–1356.

    Google Scholar 

  43. E. Brinkmeyer, Analysis of the backscattering method for single-mode optical fibers. J. Opt. Soc. Am. 70(8), 1010–1012 (1980)

    Article  ADS  Google Scholar 

  44. A.H. Hartog, M.P. Gold, On the theory of Backscattering in single-mode optical fibers. J. Lightwave Technol. LT-2(2), 76–82 (1984)

    Article  ADS  Google Scholar 

  45. F. Caviglia and P. Ricaldone, Noise error in OTDR splice loss measurement, Symposium on Optical Fiber Measurements: Technical Digest, 1994, NIST Special Publication 864, pp. 49–52.

    Google Scholar 

  46. M.P. Gold, A.H. Harotg, Improved-dynamic-range single-mode OTDR at 1.3 μm. Electron. Lett. 20(7), 285–287 (1984)

    Article  Google Scholar 

  47. H. Izumita, Y. Koyamada, S. Furukawa, and I. Sankawa, Performance limits of coherent OTDR due to optical nonlinear effects, Symposium on Optical Fiber Measurements, Technical Digest, 1994, NIST Special Publication 864, pp. 39–44.

    Google Scholar 

  48. M. Ghioni, G. Ripamonti, S. V. Vanoli, and S. Pitassi, Multiphoton pulse approach in photon-timing OTDR yields enhanced dynamic range and shorter measurement time, Symposium on Optical Fiber Measurements, Technical Digest, 1990, NIST Special Publication 792, pp. 31–34.

    Google Scholar 

  49. G. Pipamonti, S. Cova, Optical time-domain reflectometry with centimetre resolution at 10–15 W sensitivity. Electron. Lett. 22(15), 818–819 (1986)

    Article  Google Scholar 

  50. D. Dolfi, M. Nazarathy, S.A. Newton, 5-mm-resolution optical-frequency-domain reflectometry using a coded phase-reversal modulator. Opt. Lett. 13(8), 678–680 (1988)

    Article  ADS  Google Scholar 

  51. D. Dolfi, M. Nazarathy, Optical frequency domain reflectometry with high sensitivity and resolution using optical synchronous detection with coded modulators. Electron. Lett. 25(2), 160–162 (1989)

    Article  Google Scholar 

  52. V.C.Y. So, J.W. Jiang, J.A. Cargill, P.J. Vella, Automation of an Optical Time Domain Reflectometer to measure loss and return loss. J. Lightwave Technol. 8(7), 1078–1082 (1990)

    Article  ADS  Google Scholar 

  53. B.L. Danielson, C.D. Whittenberg, Guide-wave reflectometry with micrometer resolution. Appl. Opt. 26(14), 2836–2842 (1987)

    Article  ADS  Google Scholar 

  54. K. Takada, I. Yokohama, K. Chida, J. Noda, New measurement system for fault location in optical waveguide devices based on an interferometric technique. Appl. Opt. 26(9), 1603–1606 (1987)

    Article  ADS  Google Scholar 

  55. W. V. Sorin and D. K. Donald, Long and short range measurements using coherent FMCW reflectometry, Symposium on Optical Fiber Measurements, Technical Digest, 1990, NIST Special Publication 792, pp. 27–30.

    Google Scholar 

  56. K. Takada, A. Himeno, K. Yukimatsu, High sensitivity and submillimeter resolution optical-time domain reflectometry based on low-coherence interference. J. Lightwave Technol. 9(11), 1534–1539 (1991)

    Article  ADS  Google Scholar 

  57. K. Takada, K. Yukimatsu, M. Kobayashi, J. Noda, Rayleigh backscattering measurement of single-mode fibers by low coherence optical domain reflectometer with 14 μm spatial resolution. Appl. Phys. Lett. 59(2), 143–145 (1991)

    Article  ADS  Google Scholar 

  58. K. Takada, A. Himeno, K. Yukimatsu, Resolution-controllable optical time domain reflectometry based on low coherence interference. J. Lightwave Technol. 10(12), 1998–2005 (1992)

    Article  ADS  Google Scholar 

  59. E.A. Swanson, D. Huang, M.R. Hee, J.G. Fujimoto, C.P. Lin, C.A. Puliafito, High-speed optical coherence domain reflectometry. Opt. Lett. 17(2), 151–153 (1992)

    Article  ADS  Google Scholar 

  60. L.-T. Wang, K. Iiyama, F. Tsukada, N. Yoshida, K. Hayashi, Loss measurement in optical waveguide devices by coherent frequency-modulated continuous-wave reflectometry. Opt. Lett. 18(13), 1095–1097 (1993)

    Article  ADS  Google Scholar 

  61. S. K. Das, A. F. Judy, G. M. Alameel, R. M. Jopson, and T. F. Adda, Reflectance measurement in lightwave systems: A comparison of various techniques, Symposium on Optical Fiber Measurements, Technical Digest, 1988, NIST Special Publication 748, pp. 25–30.

    Google Scholar 

  62. E. L. Buckland and M. Nishimura, Bidirectional OTDR measurements utilizing an improved folded-path technique, Symposium on Optical Fiber Measurements, Technical Digest, 1988, NIST Special Publication 748, pp. 15–18.

    Google Scholar 

  63. A. F. Judy, An OTDR based combined end-reflection and backscatter measurement, Symposium on Optical Fiber Measurements, Technical Digest, 1992, NIST Special Publication 839, pp. 19–22.

    Google Scholar 

  64. F.P. Kapron, B.P. Adams, E.A. Thomas, J.W. Peters, Fiber-optic reflection measurements using OCWR and OTDR techniques. J. Lightwave Technol. 7(8), 1234–1241 (1989)

    Article  ADS  Google Scholar 

  65. P. Blanchard, P.-H. Zongo, P. Facq, Accurate reflectance and optical fibre backscatter parameter measurements using an OTDR. Electron. Lett. 26(25), 2060–2062 (1991)

    Article  Google Scholar 

  66. L. Ducos and P. Facq, Windowing technique for accurate measurement of low reflectances by OTDR, Symposium on Optical Fiber Measurements, Technical Digest, 1994, NIST Special Publication 864, pp. 45–48.

    Google Scholar 

  67. D. Marcuse, Reflection losses from imperfectly broken fiber ends. Appl. Opt. 14(12), 3016–3020 (1975)

    Article  ADS  Google Scholar 

  68. M. A. Bukhshtab, V. N. Koromislichenko, and A. A. Ovsiannikov, Method of determining optical losses at the ends and end joints of fiber light guides, US Patent 5,037,197, 6 Aug. 1991.

    Google Scholar 

  69. M. A. Bukhshtab and V. N. Koromislichenko, Light reflection method for transmission-loss measurements in optical fiber lightguides, US Patent 5,226,102, 6 Jul. 1993.

    Google Scholar 

  70. M. A. Bukhshtab, Method of determining the optical loss in a fiber-optic light guide in reflected radiation, US Patent Number 5,331,391, 19 Jul. 1994.

    Google Scholar 

  71. M.M. Choy, J.M. Gimlett, R. Welter, L.G. Kasovsky, N.K. Cheung, Interferometric conversion of laser phase noise to intensity noise by single mode fiber optic components. Electron. Lett. 23(21), 1151–1152 (1987)

    Article  Google Scholar 

  72. L. Mandel, Phenomenological theory of laser beam fluctuations and beam mixing, Phys. Rev 138(3B), B753–B762 (1965)

    Article  Google Scholar 

  73. J.A. Armstrong, Theory of interferometric analysis of laser phase noise. J. Opt. Soc. Am. 56(8), 1024–1031 (1966)

    Article  ADS  Google Scholar 

  74. C.H. Henry, Theory of the linewidth of semiconductor lasers. IEEE J. Quantum Electron. QE-18(2), 259–264 (1982)

    Article  ADS  Google Scholar 

  75. R.W. Tkach, A.R. Chraplyvy, Phase noise and linewidth in an InGaAsP DFB laser. J. Lightwave Technol. LT-4(11), 1711–1716 (1986)

    Article  ADS  Google Scholar 

  76. M. Tur, E.L. Goldstein, Dependence of error rate on signal-to-noise ratio in fiber-optic communication systems with phase-induced intensity noise. J. Lightwave Technol. 7(12), 2055–2058 (1989)

    Article  ADS  Google Scholar 

  77. A. Arie, M. Tur, E.L. Goldstein, Probability-density function of noise at the output of a two-beam interferometer. J. Opt. Soc. Am. A 8(12), 1936–1942 (1991)

    Article  ADS  Google Scholar 

  78. J.L. Gimlett, N.K. Cheung, Effects of phase-to-intensity noise conversion by multiple reflections on gigabit-per-second DFB laser transmission systems. J. Lightwave Technol. 7(6), 888–895 (1989)

    Article  ADS  Google Scholar 

  79. J.L. Gimlett, M.Z. Iqobal, N.K. Cheung, A. Righetti, F. Fontana, G. Grasso, Observation of equivalent Rayleigh scattering mirrors in lightwave systems with optical amplifiers. IEEE Photon. Technol. Lett. 2(3), 211–213 (1990)

    Article  ADS  Google Scholar 

  80. C. Desem, Optical Interference in subscriber multiplexed systems with multiple optical carriers. IEEE J. Select. Areas in Commun. 8(7), 1290–1295 (1990)

    Article  Google Scholar 

  81. M. Nazarathy, W. Sorin, D. Baney, S. Newton, Spectral analysis of optical mixing measurements. J. Lightwave Technol. 7(7), 1083–1096 (1989)

    Article  ADS  Google Scholar 

  82. P.J. Legg, D.K. Hunter, I. Andonovic, P.E. Barnsley, Inter-channel crosstalk phenomena in optical time division multiplexed switching networks. IEEE Photon. Technol. Lett. 6(5), 661–663 (1994)

    Article  ADS  Google Scholar 

  83. E.L. Goldstein, L. Eskildsen, A.F. Elrefaie, Performance implications of component crosstalk in transparent lightwave networks. IEEE Photon. Technol. Lett. 6(5), 657–659 (1994)

    Article  ADS  Google Scholar 

  84. E.L. Goldstein, L. Eskildsen, Scaling limitations in transparent optical networks due to low-level crosstalk. IEEE Photon. Technol. Lett. 7(1), 93–94 (1995)

    Article  ADS  Google Scholar 

  85. L. Eskildsen, P.B. Hunsen, Interferometric noise in lightwave systems with optical preamplifiers. IEEE Photon. Technol. Lett. 9(11), 1538–1540 (1997)

    Article  ADS  Google Scholar 

  86. L. Gilner, Scalability of optical multiwavelength switching networks: crosstalk analysis. J. Lightwave Technol. 17(1), 58–67 (1999)

    Article  ADS  Google Scholar 

  87. Z. Meng, Y. Hu, S. Xiong, G. Stewart, G. Whitenett, B. Culshaw, Phase noise characteristics of a diode-pumped ND:YAG laser in an unbalanced fiber-optic interferometer. Appl. Opt. 44(17), 3425–3428 (2005)

    Article  ADS  Google Scholar 

  88. J.R. Folkenberg, M.D. Nielsen, N.A. Mortensen, C. Jakobsen, H.R. Simonsen, Polarization maintaining large mode area photonic crystal fiber, Opt. Express 12(5), 956–960 (2004)

    Article  ADS  Google Scholar 

  89. I. Salinas, I. Garcés, R. Alonso, J. Pelayo, F. Villuendas, Experimental study on the origin of optical waveguide losses by means of Rayleigh backscattering measurement, Opt. Express 13(2), 564–972 (2005)

    Article  ADS  Google Scholar 

  90. P. Healy, P. Hensel, Optical time domain reflectometry by photon counting. Electron. Lett. 16(16), 631–633 (1980)

    Article  Google Scholar 

  91. R. Feced, M. Farhadiroushan, V.A. Handerek, Zero Dead-Zone OTDR with High-Spatial Resolution for Short Haul Applications. IEEE Photon. Technol. Lett. 9(5), 1140–1142 (1997)

    Article  ADS  Google Scholar 

  92. M. Legré, R. Thew, H. Zbinden, N. Gisin, High resolution optical time domain reflectometer based on 1.55 μm up-conversion photon-counting module, Opt. Express 15(13), 8237–8242 (2007)

    Article  ADS  Google Scholar 

  93. P. Blanchard, J. Dubard, L. Ducos, R. Thauvin, Simulation method of reflectance measurement error using the OTDR. IEEE Photon. Technol. Lett. 10(5), 705–706 (1998)

    Article  ADS  Google Scholar 

  94. Y.-J. Rao, D.A. Jackson, Recent progress in fiber optic low-coherence interferometry. Meas. Sci. Technol 7(7), 910–999 (1996)

    Article  Google Scholar 

  95. A.J. Rogers, Polarization-optical time domain reflectometry: A technique for the measurement of field distributions. Appl. Opt. 20, 1060–1074 (1981)

    Article  ADS  Google Scholar 

  96. J.G. Ellison, A.S. Siddiqui, A Fully Polarimetric Optical Time-Domain Reflectometer. IEEE Photon. Technol. Lett. 10(2), 246–248 (1998)

    Article  ADS  Google Scholar 

  97. B. Huttner, J. Reecht, N. Gizin, R. Passy, J.P. von der Weid, Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry. IEEE Photon. Technol. Lett. 10(10), 1458–1460 (1998)

    Article  ADS  Google Scholar 

  98. M. Han, Y. Wang, A. Wang, Grating-assisted polarization optical time-domain reflectometry for distributed fiber-optic sensing. Opt. Lett. 32(14), 2028–2030 (2007)

    Article  ADS  Google Scholar 

  99. M.G. Shlyagin, A.V. Khomenko, D. Tentori, Birefringence dispersion measurement in optical fibers by wavelength scanning. Opt. Lett. 20(8), 869–871 (1995)

    Article  ADS  Google Scholar 

  100. V.V. Spirin, F.J. Mendieta, S.V. Miridonov, M.G. Shlyagin, A.A. Chtcherbakov, P.L. Swart, Localization of a Loss-Inducing Perturbation With Variable Accuracy Along a Test Fiber Using Transmission-Reflection Analysis. IEEE Photon. Technol. Lett. 16(2), 569–571 (2004)

    Article  ADS  Google Scholar 

  101. P. Hlubina and D. Ciprian Spectral-domain measurement of phase modal birefringence in polarization-maintaining fiber, Opt. Express, 2007, Vol. 15, No. 25, pp. 17019 – 17024.

    Google Scholar 

  102. N.H. Zhu, J.H. Ke, H.G. Zhang, W. Chen, J.G. Liu, L.J. Zhao, W. Wang, Wavelength coded optical time-domain reflectometry. J. Lightwave Technol. 28(6), 972–977 (2010)

    Article  ADS  Google Scholar 

  103. V. Kalavally, I.D. Rukhlenko, M. Premaratne, T. Win, Multipath interference in pulse-pumped fiber Raman amplifiers: analytical approach. J. Lightwave Technol. 28(18), 2701–2707 (2010)

    Article  ADS  Google Scholar 

  104. T. Geng, G. Li, Y. Zhang, J. Wang, T. Zhang, Phase noise of diode laser in self-mixing interference. Opt. Express 13(16), 5904–5912 (2005)

    Article  ADS  Google Scholar 

  105. P.K. Tien, Light Waves in Thin Films and Integrated Optics. Appl. Opt. 10(11), 2395–2413 (1971)

    Article  ADS  Google Scholar 

  106. Improved method of loss measurement for optical waveguides by use of a rectangular glass probe, I. Awai, H. Onodera, Y.-k. Choi, M. Nakajima, and, J.-i. Ikenoue, Appl. Opt., 1992, Vol. 31, No. 12, pp. 2078 – 2084.

    Google Scholar 

  107. J. Cardin, D. Leduc, Determination of refractive index, thickness, and the optical losses of thin films from prism–film coupling measurements. Appl. Opt. 47(7), 894–900 (2008)

    Article  ADS  Google Scholar 

  108. T.A. Strasser, M.C. Gupta, Optical loss measurement of low-loss thin-film waveguides by photographic analysis. Appl. Opt. 31(12), 2041–2046 (1992)

    Article  ADS  Google Scholar 

  109. S. Satoh, K. Susa, I. Matsuyama, Simple method of measuring scattering losses in optical fibers. Appl. Opt. 38(34), 7080–7084 (1999)

    Article  ADS  Google Scholar 

  110. D.F. Clark, M.S. Iqbal, Simple extension to the Fabry–Perot technique for accurate measurement of losses in semiconductor waveguides. Opt. Lett. 15(22), 1291–1293 (1990)

    Article  ADS  Google Scholar 

  111. R. Fazludeen, S. Barai, P.K. Pattnaik, T. Srinivas, A. Selvarajan, A novel technique to measure the propagation loss of integrated optical waveguides. IEEE Photon. Technol. Lett. 17(2), 360–362 (2005)

    Article  ADS  Google Scholar 

  112. Y.-P. Wang, J.-P. Chen, X.-W. Li, X.-H. Zhang, J.-X. Hong, A.-L. Ye, Simultaneous measurement of various optical parameters in a multilayer optical waveguide by a Michelson precision reflectometer. Opt. Lett. 30(9), 979–981 (2005)

    Article  ADS  Google Scholar 

  113. S. Taebi, M. Khorasaninejad, S.S. Saini, Modified Fabry–Perot interferometric method for waveguide loss measurement. Appl. Opt. 47(35), 6625–6630 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bukshtab .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bukshtab, M. (2012). Propagation Losses in Fibers and Waveguides. In: Applied Photometry, Radiometry, and Measurements of Optical Losses. Springer Series in Optical Sciences, vol 163. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2165-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2165-4_11

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2164-7

  • Online ISBN: 978-94-007-2165-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics