Skip to main content

Direct Attenuation Measurements

  • Chapter
  • First Online:
  • 1714 Accesses

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 163))

Abstract

The actual means to increase the sensitivity of a given method for optical loss measurement are not necessarily restrained by limitations to the maximum number of light interactions with the object. For example, the ratio of the highest optical power not inducing damage or optical nonlinearity in the given object to the lowest optical signal definitively distinguished from noise without the need to count photons reaches at least ten or more decades of optical density when applied to optical measurements. If using any feasible method, one converts the high sensitivity to the power or energy of light into high susceptibility to small changes of that power or energy by observing a low optical loss, doing it concurrently with assuring an adequate linear dynamic range of measurements, spatial stability, and temporal stability, the low-loss measurement task would be instantly solved.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J. Strong, Procedures in Experimental Physics (Prentice-Hall, Englewood Cliffs, 1942)

    Google Scholar 

  2. M.A. Bukshtab, Measurements of Low Optical Losses (Energoatomizdat, Leningrad, 1988)

    Google Scholar 

  3. M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th edn. (Pergamon, Oxford, 1984); 7th ed. (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  4. D. Beaglehole, A sensitive single beam device for continuous reflectance or transmittance measurements. Appl. Opt. 7(11), 2218–2220 (1968)

    Article  ADS  Google Scholar 

  5. M.A. Bukshtab, V.N. Maksimov, V.N. Rezchikov, A convenient radiometer for expanded cw and pulsed laser and light-diode power and energy measurement applications: ΦΠΜ, in Impulsnaya Photometria, vol. 7 (Mashinostroenie, Leningrad, 1981), pp. 95–99

    Google Scholar 

  6. K.D. Mielenz, K.L. Eckerle, R.P. Madden, J. Reader, New reference spectrophotometer. Appl. Opt. 12(7), 1630–1641 (1973)

    Article  ADS  Google Scholar 

  7. J.C. Zwinkels, D.S. Gignac, Design and testing of a new high-accuracy ultraviolet-visible-near-infrared spectrophotometer. Appl. Opt. 31(10), 1557–1567 (1992)

    Article  ADS  Google Scholar 

  8. I. Niskanen, J. Räty, K.-E. Peiponen, Measurement of refractive index of isotropic particles by incorporating a multifunction spectrophotometer and immersion liquid method. Appl. Opt. 46(22), 5404–5407 (2007); Complex refractive index of turbid liquids. Opt. Lett. 32(7), 862–864 (2007)

    Google Scholar 

  9. M.W. Sigrist (ed.), Air Monitoring by Spectroscopic Techniques. Chemical Analysis Series, vol. 127 (Wiley, New York, 1994)

    Google Scholar 

  10. J.B. McManus, P.L. Kebabian, M.S. Zahniser, Astigmatic mirror multipass absorption cells for long-path-length spectroscopy. Appl. Opt. 34(18), 3336–3348 (1995)

    Article  ADS  Google Scholar 

  11. D.T. Cassidy, J. Reid, Harmonic detection with tunable diode lasers: two-tone modulation. Appl. Phys. B 29(4), 279–285 (1982)

    Article  ADS  Google Scholar 

  12. K.I. Tarasov, Spectrophotometers (Mashinostroenie, Leningrad, 1976)

    Google Scholar 

  13. V.G. Vorob’ev, Sources of photometric scale nonlinearity in optical-null spectrophotometers. Journ. Opt. Technol. 46(9), 512–515 (1979)

    Google Scholar 

  14. Beckman Coulter Inc., DU® 800 UV/Vis Spectrophotometer Specifications, 2010; H. H. Cary and A. O. Beckman, A Quartz Photoelectric Spectrophotometer, J. Opt. Soc. Am., 1941, Vol. 31, No. 11, pp. 682 – 689.

    Google Scholar 

  15. W. Swindell, Electronic circuits of visual radiation detectors, in Applied Optics and Optical Engineering, ed. by R.R. Shannon, J.C. Wyant (Academic Press, New York, 1980)

    Google Scholar 

  16. M.R. Querry, P.G. Cary, R.C. Waring, Split-pulse laser method for measuring attenuation coefficients of transparent liquids: application to deionized filtered water in the visible region. Appl. Opt. 17(22), 3587–3592 (1978)

    Article  ADS  Google Scholar 

  17. E.S. Voropay, V.I. Karas, P.A. Torpachev, Measurements of optical losses using two pairs of photodiode-transimpedance amplifiers. Meas. Tech. 26(2), 33–35 (1984)

    Google Scholar 

  18. E. S. Voropay, V. I. Karas, and P. A. Torpachev, Study of the possibility of measurements of the light flux with an amplitude resolution of 105, Metrologia, Moscow, 1985, No. 9, pp. 31–38.

    Google Scholar 

  19. R.T.H. Collis, Lidar. Appl. Opt. 9(8), 1782–1788 (1970)

    Article  ADS  Google Scholar 

  20. S.A. Ahmed, Molecular Air Pollution Monitoring by Dye Laser Measurement of Differential Absorption of Atmospheric Elastic Backscatter. Appl. Opt. 12(4), 901–903 (1973)

    Article  ADS  Google Scholar 

  21. J. Gelbwachs, NO2 Lidar Comparison: Fluorescence vs Backscattered Differential Absorption. Appl. Opt. 12(12), 2812–2813 (1973)

    Article  ADS  Google Scholar 

  22. U. Platt, J. Stutz, Differential Optical Absorption Spectroscopy—Principles and Applications (Springer, Heidelberg, 2005)

    Google Scholar 

  23. T. Brauers, M. Hausmann, U. Brandenburger, H.-P. Dorn, Improvement of differential optical absorption spectroscopy with a multichannel scanning technique. Appl. Opt. 34(21), 4472–4479 (1995)

    Article  ADS  Google Scholar 

  24. M. Bartholdi, G.C. Salzman, R.D. Hiebert, M. Kerker, Differential light scattering photometer for rapid analysis of single particles in flow. Appl. Opt. 19(10), 1573–1581 (1980)

    Article  ADS  Google Scholar 

  25. G. Laufer, A. Ben-David, Optimized differential absorption radiometer for remote sensing of chemical effluents. Appl. Opt. 41(12), 2263–2273 (2002)

    Article  ADS  Google Scholar 

  26. V. Ebert, P. Vogel, Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers. Appl. Phys. B 72(1), 127–135 (2001)

    Article  ADS  Google Scholar 

  27. J.R. Schmidt, S.T. Sanders, Differential absorption sensor applied for liquid oxygen measurements. Appl. Opt. 44(28), 6058–6066 (2005)

    Article  ADS  Google Scholar 

  28. I. Pundt, K.U. Mettendorf, Multibeam long-path differential optical absorption spectroscopy instrument: a device for simultaneous measurements along multiple light paths. Appl. Opt. 44(23), 4985–4994 (2005)

    Article  ADS  Google Scholar 

  29. C. Kern, S. Trick, B. Rippel, U. Platt, Applicability of light-emitting diodes as light sources for active differential optical absorption spectroscopy measurements. Appl. Opt. 45(9), 2077–2088 (2006)

    Article  ADS  Google Scholar 

  30. J. Stutz, U. Platt, Numerical analysis and estimation of the statistical error of differential optical absorption spectroscopy measurements with least-squares methods. Appl. Opt. 35(30), 6041–6053 (1996)

    Article  ADS  Google Scholar 

  31. M. Wenig, B. Jähne, U. Platt, Operator representation as a new differential optical absorption spectroscopy formalism. Appl. Opt. 44(16), 3246–3253 (2005)

    Article  ADS  Google Scholar 

  32. C. Billet, R. Sablong, Differential optical spectroscopy for absorption characterization of scattering media. Opt. Lett. 32(22), 3251–3253 (2007)

    Article  ADS  Google Scholar 

  33. A.H. Carrieri, J. Copper, D.J. Owens, E.S. Roese, J.R. Bottiger, R.D. Everly, K.C. Hung, Infrared differential-absorption Mueller matrix spectroscopy and neural network-based data fusion for biological aerosol standoff detection. Appl. Opt. 49(3), 382–393 (2010)

    Article  Google Scholar 

  34. W. Heitmann, Attenuation measurement in low-loss optical glass by polarized radiation. Appl. Opt. 14(12), 3047–3052 (1975)

    Article  ADS  Google Scholar 

  35. W. Heitmann, Attenuation measurement in glass for optical communications: an immersion method. Appl. Opt. 15(1), 256–260 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  36. F. Ferri, A. Bassini, E. Paganini, Commercial spectrophotometer for particle sizing. Appl. Opt. 36(4), 884–891 (1997)

    Article  ADS  Google Scholar 

  37. G. Bonfiglioli, P. Brovetto, Principles of Self-Modulating Derivative Optical Spectroscopy. Appl. Opt. 3(12), 1417–1424 (1964)

    Article  ADS  Google Scholar 

  38. G. Bonfiglioli, J. Trench, Signal recovering in wavelength modulated spectrometers. Optics Commun. 10(2), 207–210 (1974)

    Article  ADS  Google Scholar 

  39. E.I. Moses, C.L. Tang, High-sensitivity laser wavelength-modulation spectroscopy. Opt. Lett. 1(4), 115–117 (1977)

    Article  ADS  Google Scholar 

  40. A.T. Forrester, Photoelectric Mixing As a Spectroscopic Tool. J. Opt. Soc. Am. 51(3), 253–259 (1961)

    Article  ADS  Google Scholar 

  41. A.E. Siegman, The Antenna Properties of Optical Heterodyne Receivers. Appl. Opt. 5(10), 1588–1594 (1966)

    Article  ADS  Google Scholar 

  42. D. Fink, Coherent Detection Signal-to-Noise. Appl. Opt. 14(3), 689–690 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  43. L. Mandel, E. Wolf, Optimum conditions for heterodyne detection of light. J. Opt. Soc. Am. 65(4), 413–420 (1975)

    Article  ADS  Google Scholar 

  44. T. Takenaka, K. Tanaka, O. Fukumitsu, Signal-to-noise ratio in optical heterodyne detection for Gaussian fields. Appl. Opt. 17(21), 3466–3470 (1978)

    Article  ADS  Google Scholar 

  45. H.P. Yuen, V.W.S. Chan, Noise in homodyne and heterodyne detection. Opt. Lett. 8(3), 177–179 (1983)

    Article  ADS  Google Scholar 

  46. B.J. Rye, Differential absorption lidar system sensitivity with heterodyne reception. Appl. Opt. 17(24), 3862–3864 (1978)

    Article  ADS  Google Scholar 

  47. G.C. Bjorklund, Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions. Opt. Lett. 5(1), 15–17 (1980)

    Article  ADS  Google Scholar 

  48. W. Lenth, C. Ortiz, G.C. Bjorklund, Pulsed frequency-modulation spectroscopy as a means for fast absorption measurements. Opt. Lett. 6(7), 351–353 (1981)

    Article  ADS  Google Scholar 

  49. T.F. Gallagher, R. Kachru, F. Gounand, G.C. Bjorklund, W. Lenth, Frequency-modulation spectroscopy with a pulsed dye laser. Opt. Lett. 7(1), 28–30 (1982)

    Article  ADS  Google Scholar 

  50. M. Romagnoli, M.D. Levenson, G.C. Bjorklund, Frequency-modulation-polarization spectroscopy. Opt. Lett. 8(12), 635–637 (1983)

    Article  ADS  Google Scholar 

  51. N.H. Tran, R. Kachru, P. Pillet, H.B. van Linden van den Heuvell, T.F. Gallagher, J.P. Watjen, Frequency-modulation spectroscopy with a pulsed dye laser: experimental investigations of sensitivity and useful features. Appl. Opt. 23(9), 1353–1360 (1984)

    Article  ADS  Google Scholar 

  52. C.S. Gudeman, M.H. Begemann, J. Pfaff, R.J. Saykally, Tone-burst modulated color-center-laser spectroscopy. Opt. Lett. 8(6), 310–312 (1983)

    Article  ADS  Google Scholar 

  53. H. Lotem, Extension of the spectral coverage range of frequency modulation spectroscopy by double frequency modulation. J. Appl. Phys. 54(10), 6033–6035 (1983)

    Article  ADS  Google Scholar 

  54. D.E. Cooper, T.F. Gallagher, Double frequency modulation spectroscopy: high modulation frequency with low-bandwidth detectors. Appl. Opt. 24(9), 1327–1334 (1985)

    Article  ADS  Google Scholar 

  55. G.R. Janik, C.B. Carlisle, T.F. Gallagher, Two-Tone Frequency-Modulation Spectroscopy. J. Opt. Soc. Am. B 3(8), 1070–1074 (1986)

    Article  ADS  Google Scholar 

  56. D.E. Cooper, J.P. Watjen, Two-tone optical heterodyne spectroscopy with a tunable lead-salt diode laser. Opt. Lett. 11(10), 606–608 (1986)

    Article  ADS  Google Scholar 

  57. D.E. Cooper, R.E. Warren, Two-tone optical heterodyne spectroscopy with diode lasers: theory of line shapes and experimental results. J. Opt. Soc. Am. B 4(4), 470–480 (1987)

    Article  ADS  Google Scholar 

  58. M. Gehrtz, W. Lenth, A.T. Young, Harold S. Johnston, High-frequency-modulation spectroscopy with a lead-salt diode laser. Opt. Lett. 11(3), 132–134 (1986)

    Article  ADS  Google Scholar 

  59. N.-Y. Chou, G.W. Sachse, Single-tone and two-tone AM-FM spectral calculations for tunable diode laser absorption spectroscopy. Appl. Opt. 26(17), 3584–3587 (1987)

    Article  ADS  Google Scholar 

  60. L. Wang, H. Riris, C.B. Carlisle, T.F. Gallagher, Comparison of approaches to modulation spectroscopy with GaAIAs semiconductor lasers: application to water vapor. Appl. Opt. 27(10), 2071–2077 (1988)

    Article  ADS  Google Scholar 

  61. C.B. Carlisle, D.E. Cooper, H. Preier, Quantum noise-limited FM spectroscopy with a lead-salt diode laser. Appl. Opt. 28(13), 2567–2576 (1989)

    Article  ADS  Google Scholar 

  62. J. A. Silver, Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods, Appl. Opt., 1992, Vol. 31, No. 6, pp. 707 – 717; D. S. Bomse, A. C. Stanton, and J. A. Silver, Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser, Appl. Opt., 1992, Vol. 31, No. 6, pp. 718 – 731

    Google Scholar 

  63. J.M. Supplee, E.A. Whittaker, W. Lenth, Theoretical description of frequency modulation and wavelength modulation spectroscopy. Appl. Opt. 33(27), 6294–6302 (1994)

    Article  ADS  Google Scholar 

  64. P. Kluczynski, O. Axner, Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals. Appl. Opt. 38(27), 5803–5815 (1999)

    Article  ADS  Google Scholar 

  65. R.T. Ku, E.D. Hinkley, J.O. Sample, Long-Path Monitoring of Atmospheric Carbon Monoxide with a Tunable Diode Laser System. Appl. Opt. 14(4), 854–861 (1975)

    Article  ADS  Google Scholar 

  66. J. Shewchun, B.K. Garside, E.A. Ballik, C.C.Y. Kwan, M.M. Elsherbiny, G. Hogenkamp, A. Kazandjian, Pollution monitoring systems based on resonance absorption measurements of ozone with a "tunable" CO2 laser: some criteria. Appl. Opt. 15(2), 340–346 (1976)

    Article  ADS  Google Scholar 

  67. J. Reid, J. Shewchun, B.K. Garside, E.A. Ballik, High sensitivity pollution detection employing tunable diode lasers. Appl. Opt. 17(2), 300–307 (1978)

    Article  ADS  Google Scholar 

  68. J. Reid, B.K. Garside, J. Shewchun, M. El-Sherbiny, E.A. Ballik, High sensitivity point monitoring of atmospheric gases employing tunable diode lasers. Appl. Opt. 17(11), 1806–1810 (1978)

    Article  ADS  Google Scholar 

  69. H. Flicker, J.P. Aldridge, H. Filip, N.G. Nereson, M.J. Reisfeld, W.H. Weber, WaveNumber calibration of tunable diode lasers using etalons. Appl. Opt. 17(6), 851–852 (1978)

    Article  ADS  Google Scholar 

  70. A.R. Chraplyvy, Diode laser spectra with simultaneous frequency calibration. Appl. Opt. 17(17), 2674–2675 (1978)

    Article  ADS  Google Scholar 

  71. D.E. Jennings, Absolute line strengths in v4, 12CH4: a dual-beam diode laser spectrometer with sweep integration. Appl. Opt. 19(16), 2695–2700 (1980)

    Article  ADS  Google Scholar 

  72. D.T. Cassidy, J. Reid, High-sensitivity detection of trace gases using sweep integration and tunable diode lasers. Appl. Opt. 21(14), 2527–2530 (1982)

    Article  ADS  Google Scholar 

  73. R.D. Schaeffer, J.C. Sproul, J. O’Connell, C. van Vloten, A.W. Mantz, Multipass absorption cell designed for high temperature UHV operation. Appl. Opt. 28(9), 1710–1713 (1989)

    Article  ADS  Google Scholar 

  74. M. Fehér, P.A. Martin, A. Rohrbacher, A.M. Soliva, J.P. Maier, Inexpensive near-infrared diode-laser-based detection system for ammonia. Appl. Opt. 32(12), 2028–2030 (1993)

    Article  ADS  Google Scholar 

  75. M.P. Arroyo, R.K. Hanson, Absorption measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser. Appl. Opt. 32(30), 6104–6116 (1993)

    Article  ADS  Google Scholar 

  76. M.P. Arroyo, S. Langlois, R.K. Hanson, Diode-laser absorption technique for simultaneous measurements of multiple gasdynamic parameters in high-speed flows containing water vapor. Appl. Opt. 33(15), 3296–3307 (1994)

    Article  ADS  Google Scholar 

  77. S.C. Woodworth, D.T. Cassidy, M.J. Hamp, Sensitive absorption spectroscopy by use of an asymmetric multiple-quantum-well diode laser in an external cavity. Appl. Opt. 40(36), 6719–6724 (2001)

    Article  ADS  Google Scholar 

  78. W. Armerding, M. Spiekermann, J. Walter, F.J. Comes, Multipass optical absorption spectroscopy: a fast-scanning laser spectrometer for the in situ determination of atmospheric trace-gas components, in particular OH. Appl. Opt. 35(21), 4206–4219 (1996)

    Article  ADS  Google Scholar 

  79. D. Richter, D.G. Lancaster, F.K. Tittel, Development of an automated diode-laser-based multicomponent gas sensor. Appl. Opt. 39(24), 4444–4450 (2000)

    Article  ADS  Google Scholar 

  80. R. Claps, F.V. Englich, D.P. Leleux, D. Richter, F.K. Tittel, R.F. Curl, Ammonia detection by use of near-infrared diode-laser-based overtone spectroscopy. Appl. Opt. 40(24), 4387–4394 (2001)

    Article  ADS  Google Scholar 

  81. R.T. Ku, D.L. Spears, High-sensitivity infrared heterodyne radiometer using a tunable-diode-laser local oscillator. Opt. Lett. 1(3), 84–86 (1977)

    Article  ADS  Google Scholar 

  82. C.B. Carlisle, D.E. Cooper, Tunable-diode-laser frequency-modulation spectroscopy using balanced homodyne detection. Opt. Lett. 14(23), 1306–1308 (1989)

    Article  ADS  Google Scholar 

  83. G.D. Houser, E. Garmire, Balanced detection technique to measure small changes in transmission. Appl. Opt. 33(6), 1059–1062 (1994)

    Article  ADS  Google Scholar 

  84. P. C. D. Hobbs, Ultrasensitive laser measurements without tears, Appl. Opt., 1997, Vol. 36, No. 4, pp. 903 – 920; Noise cancelling circuitry for optical systems with signal dividing and combining means, US Patent 5,134,276; 28 Jul., 1992.

    Google Scholar 

  85. M.G. Allen, K.L. Carleton, S.J. Davis, W.J. Kessler, C.E. Otis, D.A. Palombo, D.M. Sonnenfroh, Ultrasensitive dual-beam absorption and gain spectroscopy: applications for near-infrared and visible diode laser sensors. Appl. Opt. 34(18), 3240–3248 (1995)

    Article  ADS  Google Scholar 

  86. D.M. Sonnenfroh, M.G. Allen, Ultrasensitive, visible tunable diode laser detection of NO2. Appl. Opt. 35(21), 4053–4058 (1996)

    Article  ADS  Google Scholar 

  87. D.M. Sonnenfroh, W.T. Rawlins, M.G. Allen, C. Gmachl, F. Capasso, A.L. Hutchinson, D.L. Sivco, J.N. Baillargeon, A.Y. Cho, Application of balanced detection to absorption measurements of trace gases with room-temperature, quasi-cw quantum-cascade lasers. Appl. Opt. 40(6), 812–820 (2001)

    Article  ADS  Google Scholar 

  88. M.A. Bukhshtab, Absolute measurements of small specular reflection coefficients. Meas. Tech. 30(3), 218–220 (1987)

    Article  Google Scholar 

  89. M.A. Bukshtab, Regarding Correlations Among Measurements of Low Optical Losses (Central Institute “Information”, Moscow, 1987)

    Google Scholar 

  90. M. A. Bukhshtab, Measurements of low optical loss in reflected radiation, Svetotekhnika, Moscow, 1987, No. 6, pp. 5 - 6.

    Google Scholar 

  91. M.A. Bukhshtab, V.N. Koromislichenko, A.Y. Kirillov, Two-channel system for determination of small optical losses of laser radiation with an amplitude resolution of more than 10,000. Instruments & Experimental Techniques 31(2), 443–446 (1988)

    Google Scholar 

  92. A.Gh. Podoleanu, Unbalanced versus balanced operation in an optical coherence tomography system. Appl. Opt. 39(1), 173–182 (2000)

    Article  ADS  Google Scholar 

  93. O. Haderka, V. Michálek, V. Urbášek, M. Ježek, Fast time-domain balanced homodyne detection of light. Appl. Opt. 48(15), 2884–2889 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bukshtab .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bukshtab, M. (2012). Direct Attenuation Measurements. In: Applied Photometry, Radiometry, and Measurements of Optical Losses. Springer Series in Optical Sciences, vol 163. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2165-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2165-4_10

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2164-7

  • Online ISBN: 978-94-007-2165-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics