Skip to main content

Undrained Sediment Loading Key to Long-Runout Submarine Mass Movements: Evidence from the Caribbean Volcanic Arc

  • Conference paper
  • First Online:
Submarine Mass Movements and Their Consequences

Abstract

Long undersea debris runout can be facilitated by a boundary layer formed by weak marine sediments under a moving slide mass. Undrained loading of such offshore sediment results in a profound drop of basal shear resistance, compared to subaerial shear resistance, enabling long undersea runout. Thus large long-runout submarine landslides are not truly enigmatic (Voight and Elsworth 1992, 1997), but are understandable in terms of conventional geotechnical principles. A corollary is that remoulded undrained strength, and not friction angle, should be used for basal resistance in numerical simulations. This hypothesis is testable via drilling and examining the structure at the soles of undersea debris avalanches for indications of incorporation of sheared marine sediments, by tests of soil properties, and by simulations. Such considerations of emplacement process are an aim of ongoing research in the Lesser Antilles (Caribbean Sea), where multiple offshore debris avalanche and dome-collapse debris deposits have been identified since 1999 on swath bathymetric surveys collected in five oceanographic cruises. This paper reviews the prehistoric and historic collapses that have occurred offshore of Antilles arc islands and summarizes ongoing research on emplacement processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Boudon G, Semet MP, Vincent PM (1984) Flank failure – directed blast eruption at Soufriere, Guadaloupe, French West Indies: a 3000-yr-old Mt St Helens? Geology 12:350–353

    Article  Google Scholar 

  • Boudon G, Semet MP, Vincent PM (1987) Magma and hydrothermally driven sector collapses: the 3100 and 11,500 yBP eruptions of la Grande decouverte (La Soufriere) volcano, Guadaloupe, West Indies. J Volcanol Geotherm Res 33:317–323

    Article  Google Scholar 

  • Boudon G, Le Friant A, Villemant B, Viodé J-P (2005) Martinique. In: Volcanic atlas of the Lesser Antilles. University of the West Indies, Trinidad/Tobago

    Google Scholar 

  • Boudon G, Le Friant A, Komorowski J-C, Deplus C, Semet MP (2007) Volcano flank instability in the Lesser Antilles Arc: diversity of scale, processes, and temporal recurrence. J Geophys Res 112:B08205. doi: 10.1029/2006JB004674

    Article  Google Scholar 

  • Dade WB, Huppert HE (1998) Long runout rockfalls. Geology 26:803–806

    Article  Google Scholar 

  • Deplus C, Le Friant A, Boudon G et al (2001) Submarine evidence for large-scale debris avalanches in the Lesser Antilles arc. Earth Plan Sci Lett 192(2):145–157

    Article  Google Scholar 

  • Druitt TH, Kokelaar P (2002) The eruption of Soufriere Hills Volcano, Montserrat, from 1995 to 1999. Mem Geol Soc Lond 21:639

    Google Scholar 

  • Elverhoi A, Issler D, De Biasio F et al (2005) Emerging insights into the dynamics of submarine debris flows. Nat Haz Earth Syst Sci 5:633–648

    Article  Google Scholar 

  • Harford CL, Pringle MS, Sparks RSJ, Young SR (2002) The volcanic evolution of Montserrat using 40Ar/39Ar geochronology. Mem Geol Soc Lond 21:93–113

    Article  Google Scholar 

  • Heinrich P, Mangeney A, Guibourg S, Roche R, Boudon G, Cheminée JL (1998) Simulation of water waves generated by a potential debris avalanche in Montserrat, Lesser Antilles. Geophys Res Lett 25(19):3697–3700

    Article  Google Scholar 

  • Heinrich P, Boudon G, Komorowski J-C, Sparks RSJ, Herd R, Voight B (2001) Numerical simulation of the December 1997 debris avalanche in Montserrat, Lesser Antilles. Geophys Res Lett 28:2529–2532

    Article  Google Scholar 

  • Kowsmann RO et al (2003) Shear-strength signatures of mass movements, continental slope of Campos Basin, Brazil. In: Locat J, Mienert J (eds) Submarine mass movements and their consequences. Kluwer, Dordrecht, pp 239–246

    Chapter  Google Scholar 

  • Le Friant A, Boudon G, Komorowski J-C, Deplus C (2002) L’ïle de la Dominique, à l’origine des avalanches de débris les plus volumineuses de l’arc des Petites Antilles. Comptes Rendus de l’Académie des Sciences 334:235–243

    Article  Google Scholar 

  • Le Friant A, Boudon G, Deplus C, Villemant B (2003a) Large scale flank collapse events during the activity of Montagne Pelée, Martinique, Lesser Antilles. J Geophys Res 108(B1):2055

    Article  Google Scholar 

  • Le Friant A, Heinrich P, Deplus C, Boudon G (2003b) Numerical simulation of the last flank collapse event of Montagne Pelée, Martinique, Lesser Antilles. Geophys Res Lett 30(2):1034

    Article  Google Scholar 

  • Le Friant A, Harford C, Deplus C, Boudon G, Sparks S, Herd R, Komorowski J-C (2004) Geomorphological evolution of Montserrat (West Indies): importance of flank collapse and erosional processes. J Geol Soc Lond 161:147–160

    Article  Google Scholar 

  • Le Friant A, Lock EJ, Hart MB, Leng MJ, Smart CW, Sparks RSJ, Boudon G, Deplus C, Komorowski J-C (2008) Late Pleistocene tephrochronology of marine sediments adjacent to Montserrat, Lesser Antilles volcanic arc. J Geol Soc Lond 165:279–289

    Article  Google Scholar 

  • Le Friant A, Deplus C, Boudon G, Sparks RSJ, Trofimovs J, Talling P (2009) Submarine deposition of volcaniclastic material from the 1995–2005 eruptions of Soufrière Hill Volcano, Montserrat, West Indies. J Geol Soc Lond 166:171–182

    Article  Google Scholar 

  • Le Friant A, Deplus C, Boudon G, Feuillet N, Trofimovs J et al (2010) Eruption of Soufriere Hills (1995–2009) from an offshore perspective: insights from repeated swath bathymetry surveys. Geophys Res Lett 37:L11307

    Article  Google Scholar 

  • Lebas E, Le Friant A, Boudon G et al (2011) Multiple widespread landslides during the long-term evolution of a volcanic island: insights from high-resolution seismic data, Montserrat, Lesser Antilles. Geochem Geophys Geosyst 12:Q07011

    Article  Google Scholar 

  • Mattioli GS, Voight B, Linde AT et al (2007) Unique and remarkable dilatometer measurements of pyroclastic flow–generated tsunamis. Geology 35:25–28

    Article  Google Scholar 

  • Mohrig D, Whipple K, Hondzo M, Ellis C, Parker G (1998) Hydroplaning of subaqueous flows. Geol Soc Amer Bull 110:387–394

    Article  Google Scholar 

  • Moore JG, Clague DA, Holcomb RT et al (1989) Prodigious submarine landslides on the Hawaiian ridge. J Geophys Res 94(B12):17465–17484

    Article  Google Scholar 

  • Norem H, Locat J, Schieldrop B (1990) An approach to the physics and modeling of submarine flowslides. Mar Geotechnol 9:93–111

    Article  Google Scholar 

  • Pariseau WG, Voight B (1979) Rockslides and avalanches: basic principles and perspectives in the realm of civil and mining operations. In: Voight B (ed) Rockslides and avalanches, 2: engineering sites. Elsevier, Amsterdam, pp 1–92

    Google Scholar 

  • Pouliquen O (1999) Scaling laws in granular flows down rough inclined planes. Phys Fluids 11:542–548

    Article  Google Scholar 

  • Samper A, Quidelleur X, Boudon G et al (2008) Radiometric dating of three large volume flank-collapses in the Lesser Antilles Arc. J Volcanol Geotherm Res. doi: 10.1016/j.jvolgeores.2008.04.018

    Google Scholar 

  • Sassa K (1988) Geotechnical model for the motion of landslides. In: Proceedings of the 5th international symposium on landslides, Lausanne, Balkema, Rotterdam, pp 37–55

    Google Scholar 

  • Skempton AW (1954) The pore pressure coefficients A and B. Geotechnique 4:143–147

    Article  Google Scholar 

  • Sousa J, Voight B (1991) Continuum simulation of flow failure. Geotechnique 41:515–538

    Article  Google Scholar 

  • Sousa J, Voight B (1995) Multiple-pulsed debris avalanche emplacement at Mount St Helens in 1980: evidence from numerical continuum flow simulation. J Volcanol Geotherm Res 66:227–250

    Article  Google Scholar 

  • Voight B (ed) (1978) Rockslides and avalanches, 1. Natural phenomena. Elsevier, Amsterdam, 833 pp

    Google Scholar 

  • Voight B (2000) Structural stability of andesite volcanoes and lava domes. Phil Trans Roy Soc Lond A 358:1663–1703

    Article  Google Scholar 

  • Voight B, Elsworth D (1992) Resolution of mechanics problems for prodigious Hawaiian landslides: magmatic intrusions simultaneously increase driving forces and reduce driving resistance by fluid pressure enhancement. Eos Trans AGU 73(43):506

    Google Scholar 

  • Voight B, Elsworth D (1997) Failure of volcano slopes. Geotechnique 47:1–31

    Article  Google Scholar 

  • Voight B, Faust C (1992) Frictional heat and strength loss in some rapid landslides: error correction and affirmation of mechanism for the Vaiont landslide. Geotechnique 42:641–643

    Article  Google Scholar 

  • Voight B, Sousa J (1994) Lessons from Ontake-san: a comparative analysis of debris avalanche dynamics. Eng Geol 38:261–297

    Article  Google Scholar 

  • Voight B, Glicken H, Janda RJ, Douglass PM (1981) Catastrophic rockslide-avalanche of May 18. Prof Paper US Geol Surv 1250:347–378

    Google Scholar 

  • Voight B, Janda RJ, Glicken H, Douglass PM (1983) Nature and mechanics of the Mount St Helens rockslide-avalanche of 18 May 1980. Geotechnique 33:243–273

    Article  Google Scholar 

  • Voight B, Janda RJ, Glicken H, Douglass PM (1985) Nature and mechanics of the Mount St Helens rockslide-avalanche of 18 May 1980: reply. Geotechnique 35:357–368

    Article  Google Scholar 

  • Voight B, Komorowski J-C, Norton GE et al (2002) The 26 December (Boxing Day) sector collapse and debris avalanche at Soufriere Hills Volcano, Montserrat. Mem Geol Soc London 21:363–407

    Article  Google Scholar 

Download references

Acknowledgment

We thank Prof. N. Oyagi and S. R. Young for reviews. The study was supported by NSF in the US and by IPGP, CNRS and IFREMER in France. We thank captains, crews and the participating scientists of the different cruises.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry Voight .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this paper

Cite this paper

Voight, B. et al. (2012). Undrained Sediment Loading Key to Long-Runout Submarine Mass Movements: Evidence from the Caribbean Volcanic Arc. In: Yamada, Y., et al. Submarine Mass Movements and Their Consequences. Advances in Natural and Technological Hazards Research, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2162-3_37

Download citation

Publish with us

Policies and ethics