Advertisement

Taphonomic Analysis

Chapter
  • 451 Downloads
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)

Abstract

An important objective of the current research is the analysis of mammalian taphonomy in order to differentiate between biotic and non-biotic agents, and to thus reach a better understanding of the various processes that formed the Gesher Benot Ya‘aqov (GBY) assemblage. This has been achieved by a zooarchaeological analysis of the assemblage, which has identified and characterized bone damage caused by pre- and/or post-depositional biotic agents, such as hominins, carnivores, and rodents. Among the non-biotic processes that modify thanatocoenosis assemblages are weathering and bone abrasion.

Keywords

Skeletal Element Large Carnivore Bone Shaft Marrow Extraction Postcranial Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bar-Yosef, O., Vandermeersch, B., Arensburg, B., Belfer-Cohen, A., Goldberg, P., Laville, H., et al. (1992). The excavations in Kebara Cave, Mt. Carmel. Current Anthropology, 33, 497–549.CrossRefGoogle Scholar
  2. Belfer-Cohen, A., & Bar-Yosef, O. (1981). The Aurignacian at Hayonim cave. Paléorient, 7(2), 19–42.CrossRefGoogle Scholar
  3. Binford, L. R. (1981). Bones: Ancient man and modern myths. New York: Academic Press.Google Scholar
  4. Blumenschine, R. J., & Madrigal, T. C. (1993). Variability in long bone marrow yields of East African ungulates and its zooarchaeological implications. Journal of Archaeological Science, 20, 555–587.CrossRefGoogle Scholar
  5. Brown, W. A. B., & Chapman, N. G. (1990). The dentition of fallow deer (Dama dama): A scoring scheme to assess age from wear of the permanent molariform teeth. Journal of the Zoological Society of London, 221, 659–682.CrossRefGoogle Scholar
  6. Brown, W. A. B., & Chapman, N. G. (1991). Age assessment of fallow deer (Dama dama): From a scoring scheme based on radiographs of developing permanent molariform teeth. Journal of the Zoological Society of London, 224, 367–379.CrossRefGoogle Scholar
  7. Chaplin, R. E., & White, R. W. G. (1969). The use of tooth eruption and wear, body weight and antler characteristics in the age estimation of male wild and park Fallow deer (Dama dama). Journal of the Zoological Society of London, 157, 125–132.CrossRefGoogle Scholar
  8. Crader, D. C. (1983). Recent single-carcass bone scatters and the problem of “butchery” sites in the archaeological record. In J. Clutton-Brock & C. Grigson, (Eds.), Animals and archaeology: Vol. 1. Hunters and their prey (pp. 107–141). British Archaeological Reports International Series, Vol. 163. Oxford: Archaeopress.Google Scholar
  9. Davis, S. (1980). A note on the dental and skeletal ontogeny of Gazella. Israel Journal of Zoology, 29, 129–134.Google Scholar
  10. Delagnes, A., Lenoble, A., Harmand, S., Brugal, J.-P., Prat, S., Tiercelin, J.-J., et al. (2006). Interpreting pachyderm single carcass sites in the African Lower and early middle Pleistocene record: A multidisciplinary approach to the site of Nadung’a 4 (Kenya). Journal of Anthropological Archaeology, 25, 448–465.CrossRefGoogle Scholar
  11. Dewbury, A. G., & Russell, N. (2007). Relative frequency of butchering cutmarks produced by obsidian and flint: An experimental approach. Journal of Archaeological Science, 34(3), 354–357.CrossRefGoogle Scholar
  12. Eltringham, S. K. (1999). The hippos. Poyser natural history series. London: Academic Press.Google Scholar
  13. Evans, L. A., Mccutcheon, A. L., Dennis, G. R., Mulley, R. C., & Wilson, M. A. (2005). Pore size analysis of fallow deer (Dama dama) antler bone. Journal of Material Science, 40, 5733–5739.CrossRefGoogle Scholar
  14. Frison, G. C., & Todd, L. C. (1986). The Colby mammoth site: Taphonomy and archaeology of a Clovis kill in northern Wyoming. Albuquerque, NM: University of New Mexico Press.Google Scholar
  15. Gaudzinski, S., Turner, E., Anzidei, A. P., Àlvarez-Fernández, E., Arroyo-Cabrales, J., Cinq-Mars, J., et al. (2005). The use of Proboscidean remains in every-day Palaeolithic life. Quaternary International, 126–128, 179–194.CrossRefGoogle Scholar
  16. Goren-Inbar, N., Alperson, N., Kislev, M. E., Simchoni, O., Melamed, Y., Ben-Nun, A., et al. (2004). Evidence of hominin control of fire at Gesher Benot Ya‘aqov, Israel. Science, 304, 725–727.CrossRefGoogle Scholar
  17. Goring-Morris, N. A., & Belfer-Cohen, A. (Eds.). (2003). More than meets the eye: Studies on upper palaeolithic diversity in the Near East. Oxford: Oxbow Books.Google Scholar
  18. Gray, N.-M., Kainec, K., Madar, S., Tomko, L., & Wolfe, S. (2007). Sink or swim? Bone density as a mechanism for buoyancy control in early cetaceans. The Anatomical Record, 290, 638–653.CrossRefGoogle Scholar
  19. Grigson, C. (1982). Sex and age determination of some bones and teeth of domestic cattle: A review of the literature. In B. Wilson, C. Grigson, & S. Payne (Eds.), Ageing and sexing animal bones from archaeological sites (pp. 7–24). British Archaeological Reports International Series, Vol. 109. Oxford: Archaeopress.Google Scholar
  20. Kersten, A. M. P. (1989). Age and sex composition of Epipalaeolithic fallow deer and wild goat from Ksar ‘Akil. Palaeohistoria, 29, 119–131.Google Scholar
  21. Lam, Y. M., Chen, X., Marean, C. W., & Frey, C. J. (1998). Bone density and long bone representation in archaeological faunas: Comparing results from CT and Photon Densitometry. Journal of Archaeological Science, 25, 559–570.CrossRefGoogle Scholar
  22. Lam, Y. M., Xingbin, C., & Pearson, O. M. (1999). Intertaxonomic variability in patterns of bone density and the differential representation of bovid, cervid, and equid elements in the archaeological record. American Antiquity, 64(2), 343–362.CrossRefGoogle Scholar
  23. Laws, R. M. (1968). Dentition and ageing of the Hippopotamus. African Journal of Ecology, 6(1), 19–52.CrossRefGoogle Scholar
  24. Lyman, R. L. (1994). Vertebrate taphonomy. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  25. Monchot, H., & Horwitz, L. K. (2007). Taxon representation and age and sex distributions. In M. Chazan & L. K. Horwitz (Eds.), The Lower Paleolithic site of Holon, Israel (pp. 85–88). American School of Prehistoric Research Bulletin 50. Peabody Museum of Archaeology and Ethnology. Cambridge, MA: Harvard University Press.Google Scholar
  26. Morin, E. (2004). Late Pleistocene population interaction in Western Europe and modern human origins: New insights based on the faunal remains from Saint-Césaire, Southwestern France. Ph.D. dissertation, University of Michigan, Ann Arbor.Google Scholar
  27. Munro, N. D., & Bar-Oz, G. (2005). Gazelle bone fat processing in the Levantine Epipalaeolithic. Journal of Archaeological Science, 32, 223–239.CrossRefGoogle Scholar
  28. Outram, A. K., & Rowley-Conwy, P. (1998). Meat and marrow utility indices for horse (Equus). Journal of Archaeological Science, 25, 839–849.CrossRefGoogle Scholar
  29. Pickering, T. R. (2002). Reconsideration of criteria for differentiating faunal assemblages accumulated by hyenas and homininds. International Journal of Osteoarchaeology, 12, 127–141.CrossRefGoogle Scholar
  30. Pohlmeyer, K. (1985). Zur Vergleichenden Anatomie von Damtier (Dama dama), Schaf (Ovis aries) und Ziege (Capra hircus). Ostelogie und Postnatale Osteogenese. Berlin: Verlag Paul Paray.Google Scholar
  31. Pokines, J. T. (1998). Experimental replication and use of Cantabrian Lower Magdalenian antler projectile points. Journal of Archaeological Science, 25, 875–886.CrossRefGoogle Scholar
  32. Rabinovich, R. (1998). Patterns of animal exploitation and subsistence in Israel during the Upper Paleolithic and Epi-Paleolithic (40,000–12,500 BP) based upon selected case studies. Ph.D. dissertation, The Hebrew University of Jerusalem, Jerusalem.Google Scholar
  33. Rabinovich, R., Bar-Yosef, O., & Tchernov, E. (1997). “How many ways to skin a gazelle” – butchery patterns from an Upper Palaeolithic site, Hayonim cave, Israel. Archaeozoologia, VIII/1, 2 (N 15/16), 11–52.Google Scholar
  34. Rabinovich, R., Gaudzinski-Windheuser, S., & Goren-Inbar, N. (2008a). Systematic butchering of fallow deer (Dama) at the early Middle Pleistocene Acheulian site of Gesher Benot Ya‘aqov (Israel). Journal of Human Evolution, 54, 134–149.CrossRefGoogle Scholar
  35. Stiner, M. C. (2005). The faunas of Hayonim Cave (Israel): A 200,000-year record of Paleolithic diet, demography, and society. American School of Prehistoric Research Bulletins, Vol. 48, Peabody Museum of Archaeology and Ethnology. Cambridge, MA: Harvard University Press.Google Scholar
  36. Moehlman, P. D. (Ed.). (2002). Equids: Zebras, asses and horses: Status survey and conservation action plan (pp. 2–10, 61–71). IUCN/SCC Equid Specialist Group, The World Conservation Union.Google Scholar
  37. Rabinovich, R., & Tchernov, E. (1995). The faunal remains from Qafzeh. In H. Buitenhuis & A. T. Clason (Eds.), Archaeozoology of the near East (pp. 5–44). Second symposium. Tubingen.Google Scholar
  38. Voorhies, M. R. (1969). Taphonomy and population dynamics of an early Pleistocene vertebrate fauna, Knox Country, Nebraska. Contributions to Geology, Special Papers 1 (Wyoming).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Institute of Earth Sciences and National Natural History Collections, Institute of Archaeology, The Hebrew University of JerusalemGivat Ram JerusalemIsrael
  2. 2.Palaeolithic Research UnitRömisch-Germanisches ZentralmuseumNeuwiedGermany
  3. 3.Johannes Gutenberg-University Mainz, Institute for Pre- and Protohistoric ArchaeologyNeuwiedGermany
  4. 4.Institute of Archaeology, The Hebrew University of JerusalemMt. Scopus JerusalemIsrael

Personalised recommendations