Advertisement

Materials and Methodology

Chapter
  • 447 Downloads
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)

Abstract

Analysis of the animal bones from Area C and the JB entails taxonomic identification followed by morphometric, taphonomic, and surface-modification analyses. Emphasis was also placed on a series of experiments, whose methodology is described below.

Keywords

Bone Surface Skeletal Element Fallow Deer Tooth Mark Prehistoric Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Andrews, P., & Cook, J. (1985). Natural modifications to bones in a temperate setting. Man, 20, 675–691.CrossRefGoogle Scholar
  2. Behrensmeyer, A. K. (1975a). The taphonomy and paleoecology of Plio Pleistocene vertebrate assemblages east of Lake Rudolf, Kenya. Bulletin Museum of Comparative Zoology, 146, 473–578.Google Scholar
  3. Behrensmeyer, A. K. (1978). Taphonomic and ecological information from bone weathering. Paleobiology, 4, 150–162.Google Scholar
  4. Behrensmeyer, A. K. (1988). Vertebrate preservation in fluvial channels. Palaeogeography, Palaeoclimatology, Palaeocology, 63, 183–199.CrossRefGoogle Scholar
  5. Behrensmeyer, A. K., & Boaz, D. E. D. (1980). The recent bones of Amboseli National Park, Kenya, in relation to East African paleoecology. In A. K. Behrensmeyer & A. P. Hill (Eds.), Fossils in the making (pp. 72–92). Chicago: University of Chicago Press.Google Scholar
  6. Behrensmeyer, A. K., Gordon, K. D., & Yanagi, G. T. (1986). Trampling as a cause of bone surface damage and pseudo-cutmarks. Nature, 319, 768–771.CrossRefGoogle Scholar
  7. Binford, L. R. (1978). Nunamiut ethnoarchaeology. New York: Academic Press.Google Scholar
  8. Binford, L. R. (1981). Bones: Ancient man and modern myths. New York: Academic Press.Google Scholar
  9. Binford, L. R. (1984). Butchering, sharing, and the archaeological record. Journal of Anthropological Archaeology, 3, 235–257.CrossRefGoogle Scholar
  10. Blasco, R., Rosell, J., Férnandez Peris, J., Cáceres, I., & María Vergès, J. (2008). A new element of trampling: An experimental application on the level XII faunal record of Bolomor Cave (Valencia, Spain). Journal of Archaeological Science, 35, 1605–1618.CrossRefGoogle Scholar
  11. Blumenschine, R. J. (1995). Percussion marks, tooth marks, and timing of hominid and carnivore access to long bones at FLK Zinjanthropus Olduvai Gorge, Tanzania. Journal of Human Evolution, 29, 21–51.CrossRefGoogle Scholar
  12. Blumenschine, R. J., & Marean, C. W. (1993). A carnivore’s view of archaeological bone assemblages. In J. Hudson (Ed.), From bones to behavior: Ethnoarchaeological and experimental contributions to the interpretations of faunal remains (pp. 271–300). Carbondale, IL: Southern Illinois University.Google Scholar
  13. Blumenschine, R. J., & Selvaggio, M. M. (1988). Percussion marks on bone surfaces as a new diagnostic of hominid behaviour. Nature, 333, 763–765.CrossRefGoogle Scholar
  14. Blumenschine, R. J., & Selvaggio, M. M. (1991). On the marks of marrow bone processing by hammerstones and hyaenas: Their anatomical patterning and archaeological implications. In J. D. Clark (Ed.), Cultural beginnings: Approaches to understanding early hominid life-ways in the African savanna (pp. 17–32). Bonn: Habelt Verlag.Google Scholar
  15. Campana, D. V., & Crabtree, P. J. (1987). Animals. A C language computer program of the analysis of faunal remains and its use in the study of Early Iron age fauna from Dun Ailinne. Archaeozoologia, 1(1), 57–68.Google Scholar
  16. Denys, C. (2002). Taphonomy and experimentation. Archaeometry, 44(3), 469–484.CrossRefGoogle Scholar
  17. Domínguez-Rodrigo, M., & Barba, R. (2006). New estimates of tooth mark and percussion mark frequencies at the FLK Zinj site: The carnivore-hominid-carnivore hypothesis falsified. Journal of Human Evolution, 50, 170–194.CrossRefGoogle Scholar
  18. Domínguez-Rodrigo, M., & Yarverda, J. (2009). Why are cut mark frequencies in archaeofaunal assemblages so variable? A multivariate analysis. Journal of Archaeological Science, 36, 884–894.CrossRefGoogle Scholar
  19. Faith, J. T. (2007). Sources of variation in carnivore tooth-mark frequencies in a modern spotted hyena (Crocuta crocuta) den assemblage, Amboseli Park, Kenya. Journal of Archaeological Science, 34, 1601–1609.CrossRefGoogle Scholar
  20. Faith, J. T., & Gordon, A. D. (2007). Skeletal element abundances in archaeofaunal assemblages: Economic utility, sample size, and assessment of carcass transport strategies. Journal of Archaeological Science, 34, 872–882.CrossRefGoogle Scholar
  21. Feibel, S. C. (2001). Archaeological sediments in lake margin environments. In J. K. Stein & W. R. Farrand (Eds.), Sediments in archaeological contexts (pp. 127–148). Salt Lake City, UT: University of Utah Press.Google Scholar
  22. Fernández-Jalvo, Y., & Andrews, P. (2003). Experimental effects of water abrasion on bone fragments. Journal of Taphonomy, 1(3), 145–161.Google Scholar
  23. Fernández-Jalvo, Y., Sánchez-Chillón, B., Andrews, P., Fernández-López, S., & Alcalá Martínez, L. (2002). Morphological taphonomic transformations of fossil bones in continental environments, and repercussions on their chemical composition. Archaeometry, 44(3), 353–361.CrossRefGoogle Scholar
  24. Fiorillo, R. A. (1989). An experimental study of trampling: Implications for the fossil record. In R. Bonnichsen & H. M. Sorg (Eds.), Bone modification (pp. 61–71). Orono, ME: Center for the Study of the first Americans.Google Scholar
  25. Gaudzinski-Windheuser, S., Kindler, L., Rabinovich, R., & Goren-Inbar, N. (2010). Testing heterogeneity in faunal assemblages from archaeological sites. Tumbling and trampling experiments at the Early-Middle Pleistocene site of Gesher Benot Ya‘aqov (Israel). Journal of Archaeological Science, 37, 3170–3190.CrossRefGoogle Scholar
  26. Gifford-Gonzales, D. P., Damrosch, D. B., Damrosch, D. R., Pryor, J., & Thunen, R. L. (1985). The third dimension in site structure: An experiment in trampling and vertical dispersal. American Antiquity, 50, 803–818.CrossRefGoogle Scholar
  27. Haynes, G. (1983). A guide to differentiating mammalian carnivore taxa responsible for gnaw damage to herbivore limb bones. Paleobiology, 9(2), 164–172.Google Scholar
  28. Kerbis-Peterhans, J. C., & Horwitz, L. K. (1992). A bone assemblage from a striped hyaena (Hyaena hyaena) den in the Negev desert, Israel. Israel Journal of Zoology, 37, 225–245.Google Scholar
  29. Kreutzer, L. A. (1992). Bison and deer bone mineral densities: Comparisons and implication for the interpretation of archaeological faunas. Journal Archaeological Science, 19, 271–294.CrossRefGoogle Scholar
  30. Lam, Y. M., & Pearson, O. M. (2005). Bone density studies and the interpretation of the faunal record. Evolutionary Anthropology, 14, 99–108.CrossRefGoogle Scholar
  31. Lam, Y. M., Chen, X., Marean, C. W., & Frey, C. J. (1998). Bone density and long bone representation in archaeological faunas: Comparing results from CT and Photon Densitometry. Journal of Archaeological Science, 25, 559–570.CrossRefGoogle Scholar
  32. Lam, Y. M., Xingbin, C., & Pearson, O. M. (1999). Intertaxonomic variability in patterns of bone density and the differential representation of bovid, cervid, and equid elements in the archaeological record. American Antiquity, 64(2), 343–362.CrossRefGoogle Scholar
  33. Lyman, R. L. (1994). Vertebrate taphonomy. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  34. Martínez-Navarro, B. (2004). Hippos, pigs, bovids, saber-toothed tigers, monkey, and hominids: Dispersals through the Levantine Corridor during Late Pliocene and Early Pleistocene times. In N. Goren-Inbar & J. D. Speth (Eds.), Human paleoecology in the Levantine Corridor (pp. 37–52). Oxford: Oxbow Books.Google Scholar
  35. Martínez-Navarro, B., & Rabinovich, R. (2011). The fossil Bovidae (Artiodactyla, Mammalia) from Gesher Benot Ya‘aqov, Israel: Out of Africa during the Early-Middle Pleistocene transition. Journal of Human Evolution, 60, 375–386.CrossRefGoogle Scholar
  36. Morlan, R. E. (1994). Bison bone fragmentation and survivorship: A comparative method. Journal of Archaeological Science, 21, 797–807.CrossRefGoogle Scholar
  37. Nielson, A. E. (1991). Trampling the archaeological record: An experimental study. American Antiquity, 50(3), 483–503.CrossRefGoogle Scholar
  38. Oliver, S. J. (1989). Analogues and site context: Bone damages from Shield Trap Cave (24CB91), Carbon Country, Montana, U.S.A. In R. Bonnichsen & H. M. Sorg (Eds.), Bone modification (pp. 73–98). Orono, ME: Center for the Study of the first Americans.Google Scholar
  39. Olsen, S. L., & Shipman, P. (1988). Surface modification on bone: Trampling versus butchery. Journal of Archaeological Science, 15, 535–553.CrossRefGoogle Scholar
  40. Outram, A. K. (2001). A new approach to identifying bone marrow and grease exploitation: Why the “indeterminate” fragments should not be ignored. Journal of Archaeological Science, 28, 401–410.CrossRefGoogle Scholar
  41. Outram, A. K., & Rowley-Conwy, P. (1998). Meat and marrow utility indices for horse (Equus). Journal of Archaeological Science, 25, 839–849.CrossRefGoogle Scholar
  42. Rabinovich, R. (1990). Taphonomic research on the faunal assemblage from the Quneitra site. In N. Goren-Inbar, Quneitra: An open air Mousterian site in the Golan Heights (pp. 189–219). Qedem Vol. 31, Institute of Archaeology, Hebrew University, Jerusalem.Google Scholar
  43. Rabinovich, R. (1998). Patterns of animal exploitation and subsistence in Israel during the Upper Paleolithic and Epi-Paleolithic (40,000–12,500 BP) based upon selected case studies. Ph.D. dissertation, The Hebrew University of Jerusalem, Jerusalem.Google Scholar
  44. Rabinovich, R., Gaudzinski-Windheuser, S., & Goren-Inbar, N. (2008a). Systematic butchering of fallow deer (Dama) at the early Middle Pleistocene Acheulian site of Gesher Benot Ya‘aqov (Israel). Journal of Human Evolution, 54, 134–149.CrossRefGoogle Scholar
  45. Rogers, A. R. (2000). On the value of soft bones in faunal analysis. Journal of Archaeological Science, 27, 635–639.CrossRefGoogle Scholar
  46. Sachs, L. (1984). Angewandte Statistik. Anwendung statistischer Methoden. Heidelberg: Springer-Verlag, Berlin.Google Scholar
  47. Shipman, P. (1981). Life history of a fossil: An introduction to taphonomy and paleoecology. Cambridge, MA: Harvard University Press.Google Scholar
  48. Shipman, P. (1986). Scavenging or hunting in early hominids: Theoretical framework and tests. American Anthropology, 88, 27–43.CrossRefGoogle Scholar
  49. Shipman, P., & Rose, J. (1983). Evidence of butchery activities at Torralba and Ambrona: An evaluation using microscopic techniques. Journal of Archaeological Science, 10, 465–474.CrossRefGoogle Scholar
  50. Shipman, P., & Rose, J. (1984). Cutmark mimics on modern fossil bovid bones. Current Anthropology, 25, 116–177.CrossRefGoogle Scholar
  51. Tappen, M. (1994). Bone weathering in the tropical forest. Journal of Archaeological Science, 21, 667–673.CrossRefGoogle Scholar
  52. Trueman, C. N., & Martill, D. M. (2002). The long-term survival of bone: The role of bioerosion. Archaeometry, 44(3), 371–382.CrossRefGoogle Scholar
  53. Voorhies, M. R. (1970). Sampling difficulties in reconstructing late Tertiary mammalian communities. In E. L. Yochelson (Ed.), Proceeding of the North American paleontological convention (pp. 454–468). Lawrence, WI: Allen Press.Google Scholar
  54. Rabinovich, R., & Horwitz, L. K. (1994). An experimental approach to the study of porcupine damage to bones. In M. Patou-Mathis (Ed.), Outillage peu élaboré en os et bois de Cervidés IV: Taphonomie/bone modification 8 (pp. 97–11). Treignes: ֹÉditions du Centre d’études et de documentation (Artefacts 9).Google Scholar
  55. Voorhies, M. R. (1969). Taphonomy and population dynamics of an early Pleistocene vertebrate fauna, Knox Country, Nebraska. Contributions to Geology, Special Papers 1 (Wyoming).Google Scholar
  56. von den Driesch, A. (1976). A guide to the measurements of animal bones from archaeological sites. Peabody Museum Bulletin 1. Cambridge, MA: Harvard University Press.Google Scholar
  57. Domínguez-Rodrigo, M., de Juana, S., Galán, A. B., & Rodríguez, M. (2009). A new protocol to differentiate trampling marks from butchery cut marks. Journal of Archaeological Science, 36, 2643–2654.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Institute of Earth Sciences and National Natural History Collections, Institute of Archaeology, The Hebrew University of JerusalemGivat Ram JerusalemIsrael
  2. 2.Palaeolithic Research UnitRömisch-Germanisches ZentralmuseumNeuwiedGermany
  3. 3.Johannes Gutenberg-University Mainz, Institute for Pre- and Protohistoric ArchaeologyNeuwiedGermany
  4. 4.Institute of Archaeology, The Hebrew University of JerusalemMt. Scopus JerusalemIsrael

Personalised recommendations