Skip to main content

Genetically Engineered Insects – Regulatory Progress and Challenges

  • Chapter
  • First Online:
Regulation of Agricultural Biotechnology: The United States and Canada

Abstract

Genetically engineered insects (GE) represent a potentially valuable new tool in the control of insect pests both in agriculture and public health.

Insects that are currently being regulated for non-laboratory use are based on the development of the Sterile Insect Technique (SIT) for pest population suppression, using genetics to enhance or replace aspects of current SIT methods. Genetics-based improvements include the provision of a heritable marker, replacement of radiation-sterilization, large-scale sex separation and improved biosecurity. In the USA, open field trials of genetically engineered pink bollworm (Pectinphora gossypiella), a serious economic pest of cotton, have been taking place since 2006 and the first Environmental Impact Statement on any genetically engineered organism, under the National Environmental Protection Act (NEPA), was developed and approved for GE pink bollworm and fruit flies. This chapter will look at the regulatory process and data requirements for moving GE insects from laboratory to field testing, and the current status of regulations and guidance documents on GE insects in plant pest control programs. Additionally it will discuss areas for further development in regulation of GE insects. Regulatory risk – uncertainty in timescale, cost and outcome – is cited by developers, investors and potential users of GE insects as the single biggest concern and obstacle to the development and deployment of novel products in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://flystocks.bio.indiana.edu/Inst/history.htm. Accessed 7 Feb 2011.

  2. 2.

    Data presented at 59th Annual Meeting of the American Society of Tropical Medicine and Hygiene, Nov 2010; see also http://www.oxitec.com/wp-content/uploads/2010/11/Oxitec-MRCU-press-release.pdf. Accessed 21 Feb 2011.

  3. 3.

    http://bch.cbd.int/onlineconferences/guidancedoc_ra_mosquitoes.shtml. Accessed 21 Feb 2011.

  4. 4.

    Cayman Islands risk assessment for genetically modified mosquitoes:

    http://www.parliament.uk/deposits/depositedpapers/2011/DEP2011-0053.pdf Malaysian government opinion on open release of GM mosquitoes: http://bch.cbd.int/database/record-v4.shtml?documentid=101480 Brazilian government opinion on open release of GM mosquitoes (in Portuguese): http://www.jusbrasil.com.br/diarios/23935599/dou-secao-1-17-12-2010-pg-48

  5. 5.

    https://www.ippc.int/index.php?id=1110798&tx_publication_pi1[showUid]=184204&frompage=13399&type=publication&subtype=&L=0#item. Accessed 21 Feb 2011.

  6. 6.

    https://www.ippc.int/index.php?id=13399&tx_publication_pi1[showUid]=76047. Accessed 21 Feb 2011.

  7. 7.

    https://www.ippc.int/index.php?id=13399&tx_publication_pi1[showUid]=34163. Accessed 21 Feb 2011.

  8. 8.

    http://www.aphis.usda.gov/plant_health/ea/geneng.shtml

  9. 9.

    Federal Register Vol. 74 No 87, p21314-6, May 7, 2009, also available at http://www.aphis.usda.gov/plant_health/ea/geneng.shtml

References

  • Alphey L (2002) Re-engineering the sterile insect technique. Insect Biochem Mol Biol 32:1243–1247

    Article  PubMed  CAS  Google Scholar 

  • Alphey L (2007) Engineering insects for the sterile insect technique. In: Vreysen M, Robinson A, Hendrichs J (eds) Area-wide control of insect pests: from research to field implementation. Springer, Dordrecht, pp 51–60

    Chapter  Google Scholar 

  • Alphey L (2009) Natural and engineered mosquito immunity. J Biol 8:40

    Article  PubMed  Google Scholar 

  • Alphey L, Andreasen MH (2002) Dominant lethality and insect population control. Mol Biochem Parasitol 121:173–178

    Article  PubMed  CAS  Google Scholar 

  • Alphey L, Beard B, Billingsley P, Coetzee M, Crisanti A, Curtis CF, Eggleston P, Godfray C, Hemingway J, Jacobs-Lorena M et al (2002) Malaria control with genetically modified vectors. Science 298:119–121

    Article  PubMed  CAS  Google Scholar 

  • Alphey L, Benedict MQ, Bellini R, Clark GG, Dame D, Service M, Dobson S (2010) Sterile-insect methods for control of mosquito-borne diseases – an analysis. Vector Borne Zoonotic Dis 10:295–311

    Article  PubMed  Google Scholar 

  • Andreasen MH, Curtis CF (2005) Optimal life stage for radiation sterilization of Anopheles for sterile insect releases. Med Vet Entomol 19:238–244

    Article  PubMed  CAS  Google Scholar 

  • Angulo E, Gilna B (2008) When biotech crosses borders. Nat Biotechnol 26:277–282

    Article  PubMed  CAS  Google Scholar 

  • Antilla L, Liesner L (2008) Program advances in the eradication of pink bollworm, Pectinophora gossypiella, in Arizona cotton. Paper presented at 2008 Beltwide cotton conferences. National Cotton Council of America, Nashville

    Google Scholar 

  • Atkinson MP, Su Z, Alphey N, Alphey LS, Coleman PG, Wein LM (2007) Analyzing the control of mosquito-borne diseases by a dominant lethal genetic system. Proc Natl Acad Sci USA 104:9540–9545

    Article  PubMed  CAS  Google Scholar 

  • Bakri A, Mehta K, Lance DR (2005) Sterilizing insects with ionizing radiation. In: Dyck VA, Hendrichs J, Robinson AS (eds) Sterile insect technique: Principles and practice in area-wide integrated pest management. Springer, Dordrecht, pp 233–268, Available at http://www.springerlink.com/content/978–1–4020–4050–4/front-matter.pdf

    Chapter  Google Scholar 

  • Barclay HJ (2005) Mathematical models for the use of sterile insects. In: Dyck VA, Hendrichs J, Robinson AS (eds) Sterile insect technique: Principles and practice in area-wide integrated pest management. Springer, Dordrecht, pp 147–174, ISBN-10 1-4020-4050-4 (HB)

    Chapter  Google Scholar 

  • Beech C, Vasan S, Quinlan M, Capurro ML, Alphey L, Bayard V, Bouare M, Mcleod-Corena M, Kittaypong P, Lavery J et al (2009) Deployment of innovative genetic vector control strategies: progress on regulatory and biosafety aspects, capacity building and development of best practice guidance. Asia Pac J Mol Biol Biotechnol 17:75–85

    Google Scholar 

  • Bellini R, Calvitti M, Medici A, Carrieri M, Celli G, Maini S (2007) Use of the sterile insect technique against Aedes albopictus in Italy: first results of a pilot trial. In: Vreysen MB, Robinson AS, Hendrichs J (eds) Area-wide control of insect pests. Springer, Dordrecht, pp 505–515

    Chapter  Google Scholar 

  • Benedict M, Eckerstorfer M, Franz G, Gaugitsch H, Greiter A, Heissenberger A, Knols B, Kumschick S, Nentwig W, Rabitsch W (2010) Defining environmental risk assessment criteria for genetically modified insects to be placed on the EU market. Environment Agency Austria (Umweltbundesamt), Available at http://www.efsa.europa.eu/en/supporting/doc/71e.pdf

  • Benedict MQ, Robinson AS (2003) The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends Parasitol 19:349–355

    Article  PubMed  Google Scholar 

  • Benedict MQ, Tabachnick WJ, Higgs S, Azad AF, Beard CB, Beier JC, Handler AM, James AA, Lord CC, Nasci RS, Olson KE et al (2003) Arthropod containment guidelines. Version 3.1. Vector Borne Zoonotic Dis 3(2):57–98

    Article  Google Scholar 

  • Burt A (2003) Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc Biol Sci 270:921–928

    Article  PubMed  CAS  Google Scholar 

  • Burt A, Trivers R (2006) Genes in conflict: the biology of selfish genetic elements. Belknap Press/Harvard University Press, Cambridge

    Google Scholar 

  • Carpenter JE, Bloem S, Marec F (2005) Inherited sterility in insects. In: Dyck VA, Hendrichs J, Robinson AS (eds) Sterile insect technique: Principles and practice in area-wide integrated pest management. Springer, Dordrecht, pp 115–146, ISBN-13 978-1-4020-4050-4 (HB)

    Chapter  Google Scholar 

  • Catteruccia F, Benton J, Crisanti A (2005) An Anopheles transgenic sexing strain for vector control. Nat Biotechnol 23:1414–1417

    Article  PubMed  CAS  Google Scholar 

  • Catteruccia F, Crisanti A, Wimmer E (2009) Transgenic technologies to induce sterility. Malar J 8:S7

    Article  PubMed  Google Scholar 

  • Chen C-H, Huang H, Ward CM, Su JT, Schaeffer LV, Guo M, Hay BA (2007) A synthetic maternal-effect selfish genetic element drives population replacement in Drosophila. Science 316:597–600

    Article  PubMed  CAS  Google Scholar 

  • Condon K, Condon G, Dafa’alla T, Fu G, Phillips C, Jin L, Gong P, Alphey L (2007) Genetic sexing through the use of Y-linked transgenes. Insect Biochem Mol Biol 37:1168–1176

    Article  PubMed  CAS  Google Scholar 

  • Corby-Harris V, Drexler A, Watkins de Jong L, Antonova Y, Pakpour N, Ziegler R, Ramberg F, Lewis EE, Brown JM, Luckhart S et al (2010) Activation of Akt signaling reduces the prevalence and intensity of malaria parasite infection and lifespan in Anopheles stephensi Mosquitoes. PLoS Pathog 6:e1001003

    Article  PubMed  Google Scholar 

  • Curtis C, Coleman PG, Kelly DW, Campbell-Lendrum DH (2006) Advantages and limitations of transgenic vector control: sterile males versus gene drivers. In: Boëte C (ed) Genetically modified mosquitoes for malaria control. Landes Bioscience, Austin

    Google Scholar 

  • Dafa’alla T, Fu G, Alphey L (2010) Use of a regulatory mechanism of sex determination in pest insect control. J Genet 80:301–305

    Article  Google Scholar 

  • del Valle J (2003) New World screwworm (Cochliomyia hominivorax) in Mexico. Dis Inform 16:49–50

    Google Scholar 

  • Deredec A, Burt A, Godfray H (2008) Population genetics of using homing endonuclease genes in vector and pest management. Genetics 179:2013–2026

    Article  PubMed  Google Scholar 

  • Dyck VA, Hendrichs J, Robinson AS (eds) (2005) Sterile insect technique: Principles and practice in area-wide integrated pest management. Springer, Dordrecht, ISBN-10 1-4020-4051-2 (e-book)

    Google Scholar 

  • Dye C (1984) Models for the population dynamics of the yellow fever mosquito, Aedes aegypti. J Anim Ecol 53:247–268

    Article  Google Scholar 

  • Fontes E (2009) Risk assessment and risk management under the Cartagena protocol on biosafety. Asia Pac J Mol Biol Biotechnol 17:97–98

    Google Scholar 

  • Franz G (2005) Genetic sexing strains in Mediterranean fruit fly, an example for other species amenable to large-scale rearing for the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS (eds) Sterile insect technique: Principles and practice in area-wide integrated pest management. Published by Springer, Dordrecht, pp 427–451

    Chapter  Google Scholar 

  • Franz A, Sanchez-Vargas I, Adelman Z, Blair C, Beaty B, James A, Olson K (2006) Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti. Proc Natl Acad Sci USA 103:4198–4203

    Article  PubMed  CAS  Google Scholar 

  • Fryxell K, Miller T (1995) Autocidal biological control: a general strategy for insect control based on genetic transformation with a highly conserved gene. J Econ Entomol 88:1221–1232

    Google Scholar 

  • Fu G, Condon KC, Epton MJ, Gong P, Jin L, Condon GC, Morrison NI, Dafa’alla TH, Alphey L (2007) Female-specific insect lethality engineered using alternative splicing. Nat Biotechnol 25:353–357

    Article  PubMed  CAS  Google Scholar 

  • Fu G, Lees RS, Nimmo D, Aw D, Jin L, Gray P, Berendonk TU, White-Cooper H, Scaife S, Kim Phuc H et al (2010) Female-specific flightless phenotype for mosquito control. Proc Natl Acad Sci USA 107:4550–4554

    Article  PubMed  CAS  Google Scholar 

  • Gong P, Epton M, Fu G, Scaife S, Hiscox A, Condon K, Condon G, Morrison N, Kelly D, Dafa’alla T et al (2005) A dominant lethal genetic system for autocidal control of the Mediterranean fruitfly. Nat Biotechnol 23:453–456

    Article  PubMed  CAS  Google Scholar 

  • Gould F, Huang Y, Legros M, Lloyd A (2008) A killer-rescue system for self-limiting gene drive of anti-pathogen constructs. Proc R Soc B 275:2823–2829

    Article  PubMed  Google Scholar 

  • Graham HM, Mangum GL (1971) Larval diets containing dyes for tagging pink bollworm. J Econ Entomol 64:377–379

    Google Scholar 

  • Grefenstette B, El-Lissy O, Staten RT (2009) Pink bollworm eradication plan in the US (USDAAPHIS), Available at http://www.aphis.usda.gov/plant_health/plant_pest_info/cotton_pests/downloads/pbw-erad-plan2-09.pdf

  • Hagler JR, Miller E (2002) An alternative to conventional insect marking techniques: detection of a protein mark of pink bollworm by ELISA. Entomol Exp Appl 103:1–9

    Article  CAS  Google Scholar 

  • Handler A (2002) Prospects for using genetic transformation for improved SIT and new biocontrol methods. Genetica 116:137–149

    Article  PubMed  CAS  Google Scholar 

  • Handler A, James A (2000) Insect transgenesis: methods and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  • Harris AF, Nimmo D, McKemey AR, Kelly N, Scaife S, Beech C, Petrie W, Alphey L (2011) Field performance of engineered male mosquitoes. Nat Biotechnol 29(11):1034–1037

    Article  PubMed  CAS  Google Scholar 

  • Hedges LM, Brownlie JC, O’Neill SL, Johnson KN (2008) Wolbachia and virus protection in insects. Science 322:702

    Article  PubMed  CAS  Google Scholar 

  • Heinrich J, Scott M (2000) A repressible female-specific lethal genetic system for making transgenic insect strains suitable for a sterile-release program. Proc Natl Acad Sci USA 97:8229–8232

    Article  PubMed  CAS  Google Scholar 

  • Helinski M, Parker A, Knols BGJ (2006) Radiation-induced sterility for pupal and adult stages of the malaria mosquito Anopheles arabiensis. Malar J 5:41

    Article  PubMed  Google Scholar 

  • Helinski MEH, Hassan MM, El-Motasim WM, Malcolm CA, Knols BGJ, El-Sayed B (2008) Towards a sterile insect technique field release of Anopheles arabiensis mosquitoes in Sudan: Irradiation, transportation, and field cage experimentation. Malar J 7:65

    Article  PubMed  Google Scholar 

  • Higgs S (2004) The containment of arthropod vectors. University Press of Colorado, Niwot

    Google Scholar 

  • Hirata MH, Filho JM (2002) Manual de Biossegurança. Manole, São Paulo, p 466

    Google Scholar 

  • Houck M, Clark J, Peterson K, Kidwell M (1991) Possible horizontal transfer of Drosophila genes by the mite Proctolaelaps regalis. Science 253:1125–1128

    Article  PubMed  CAS  Google Scholar 

  • IAEA (2006) Status and risk assessment of the use of transgenic arthropods in plant protection. Paper presented at: proceedings of a technical meeting organised by the Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture and the Secretariat of the International Plant Protection Convention, Rome

    Google Scholar 

  • Ito J, Ghosh A, Moreira LA, Wimmer EA, Jacobs-Lorena M (2002) Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature 417:452–455

    Article  PubMed  CAS  Google Scholar 

  • Kambris Z, Cook PE, Phuc HK, Sinkins SP (2009) Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes. Science 326:134–136

    Article  PubMed  CAS  Google Scholar 

  • Klassen W (2009) Introduction: development of the sterile insect technique for African malaria vectors. Malar J 8:I1

    Article  PubMed  Google Scholar 

  • Knipling EF (1955) Possibilities of insect control or eradication through the use of sexually sterile males. J Econ Entomol 48:459–469

    Google Scholar 

  • Knols BG, Louis C, Bogers RJ (2004) Bridging laboratory and field research for genetic control of disease vectors. Paper presented at Joint WHO/TDR, NIAID, IAEA and Frontis workshop on bridging laboratory and field research for genetic control of disease vectors, Nairobi

    Google Scholar 

  • Kokoza V, Ahmed A, Cho W-L, Jasinskiene N, James A, Raikhel A (2000) Engineering blood meal-activated systemic immunity in the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci USA 97:9144–9149

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Vasan S, Nazni W, Shanaz M (2008) Scientific report on the innovative application of Aedes aegypti RIDL-sterile insect technique to combat dengue and chikungunya in Malaysia. Institute of Medical Research, Kuala Lumpur

    Google Scholar 

  • Lee HL, Joko H, Nazni WA, Vasan SS (2009) Comparative life parameters of transgenic and wild strain of Aedes aegypti in the laboratory. Dengue Bull 33:103–114

    Google Scholar 

  • Legros M, Lloyd AL, Huang Y, Gould F (2009) Density-dependent intraspecific competition in the larval stage of Aedes aegypti (Diptera: Culicidae): revisiting the current paradigm. J Med Entomol 46:409–419

    Article  PubMed  Google Scholar 

  • Loukeris TG, Livadaras I, Arca B, Zabalou S, Savakis C (1995) Gene transfer into the medfly, Ceratitis capitata, with a Drosophila hydei transposable element. Science 270:2002–2005

    Article  PubMed  CAS  Google Scholar 

  • Marrelli MT, Moreira CK, Kelly D, Alphey L, Jacobs-Lorena M (2006) Mosquito transgenesis: what is the fitness cost? Trends Parasitol 22:197–202

    Article  PubMed  Google Scholar 

  • Marshall JM (2010) The Cartagena protocol and genetically modified mosquitoes. Nat Biotechnol 28:896–897

    Article  PubMed  CAS  Google Scholar 

  • Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M et al (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139:1268–1278

    Article  PubMed  Google Scholar 

  • Morrison NI, Segura DF, Stainton KC, Fu G, Donnelly CA, Alphey LS (2009) Sexual competitiveness of a transgenic sexing strain of the Mediterranean fruit fly, Ceratitis capitata. Entomol Exp Appl 133:146–153

    Article  CAS  Google Scholar 

  • Morrison NI, Franz G, Koukidou M, Miller TA, Saccone G, Alphey LS, Beech CJ, Nagaraju J, Simmons GS, Polito LC (2011) Genetic improvements to the sterile insect technique for ­agricultural pests. Asia Pac J Mol Biol Biotechnol 18:275–295

    Google Scholar 

  • Murphy B, Jansen C, Murray J, De Barro P (2010) Risk analysis on the Australian release of Aedes aegypti (L) containing Wolbachia. CSIRO, Canberra, Australia, p 103, P.O. Box 17, 3300 AA Dordrecht, The Netherlands

    Google Scholar 

  • NAS (1987) Introduction of recombinant DNA-engineered organisms into the environment: key issues. National Academies Press, Washington, DC

    Google Scholar 

  • Office of the Gene Technology Regulator (OGTR) (2006) Guidelines for the certification of a physical containment level 2 arthropod facility. Version 2.1, Available at <http://www.health.gov.au/internet/ogtr/publishing.nsf/Content/PC2-7/$FILE/PC2ARTHv2-1.rtf>

    Google Scholar 

  • Papathanos P, Bossin H, Benedict M, Catteruccia F, Malcolm C, Alphey L, Crisanti A (2009) Sex separation strategies: past experience and new approaches. Malar J 8:S5

    Article  PubMed  Google Scholar 

  • Peloquin JJ, Thibault ST, Staten R, Miller TA (2000) Germ-line transformation of pink bollworm (Lepidoptera: Gelechiidae) mediated by the piggyBac transposable element. Insect Mol Biol 9:323–333

    Article  PubMed  CAS  Google Scholar 

  • Pew Initiative on Food and Biotechnology (2004) Bugs in the system? Pew Initiative on Food and Biotechnology, Washington, DC, USA, Available at www.springeronline.com

  • Phuc HK, Andreasen MH, Burton RS, Vass C, Epton MJ, Pape G, Fu G, Condon KC, Scaife S, Donnelly CA et al (2007) Late-acting dominant lethal genetic systems and mosquito control. BMC Biol 5:11

    Article  PubMed  Google Scholar 

  • Rasgon JL (2009) Multi-Locus Assortment (MLA) for transgene dispersal and elimination in mosquito populations. PLoS One 4:e5833

    Article  PubMed  Google Scholar 

  • Rendón P, McInnis D, Lance D, Stewart J (2004) Medfly (Diptera: Tephritidae) genetic sexing: large-scale field comparison of males-only and bisexual sterile fly releases in Guatemala. J Econ Entomol 97:1547–1553

    Article  PubMed  Google Scholar 

  • Rose R (2009) A short note on the final environmental impact statement–October 2008: use of genetically engineered fruit fly and pink bollworm in APHIS plant pest control programs. Asia Pac J Mol Biol Biotechnol 17:85–89

    Google Scholar 

  • Rubin G, Spradling A (1982) Genetic transformation of Drosophila with transposable element vectors. Science 218:3448–3453

    Article  Google Scholar 

  • Schetelig M, Caceres C, Zacharopoulou A, Franz G, Wimmer EA (2009) Conditional embryonic lethality to improve the sterile insect technique in Ceratitis capitata (Diptera: Tephritidae). BMC Biol 7:4

    Article  PubMed  Google Scholar 

  • Scolari F, Siciliano P, Gabrieli P, Gomulski L, Bonomi A, Gasperi G, Malacrida A (2011) Safe and fit genetically modified insects for pest control: from lab to field applications. Genetica 139:41–52

    Article  PubMed  CAS  Google Scholar 

  • Scott TW (2005) Containment of arthropod disease vectors. Inst Lab Anim Res J 46(1):53–61

    CAS  Google Scholar 

  • Silva J, Kidwell M (2000) Horizontal transfer and selection in the evolution of P elements. Mol Biol Evol 17:1542–1557

    Article  PubMed  CAS  Google Scholar 

  • Simmons G, Alphey L, Vasquez T, Morrison N, Epton M, Miller E, Miller T, Staten R (2007) Potential use of a conditional lethal transgenic pink bollworm Pectinophora gossypiella in area-wide eradication or suppression programmes. In: Vreysen MB, Robinson AS, Hendrichs J (eds) Area-wide control of insect pests. Springer, Dordrecht, pp 119–123

    Chapter  Google Scholar 

  • Simmons GS, McKemey AR, Morrison NI, O’Connell S, Tabashnik BE, Claus J, Fu G, Tang G, Sledge M, Walker AS et al (2011) Field performance of a genetically engineered strain of pink bollworm. PLoS One 6(9):e24110

    Article  PubMed  CAS  Google Scholar 

  • Sinkins S, Gould F (2006) Gene drive systems for insect disease vectors. Nat Rev Genet 7:427–435

    Article  PubMed  CAS  Google Scholar 

  • Spradling A, Rubin G (1982) Transposition of cloned P elements into Drosophila germ line chromosomes. Science 218:341–347

    Article  PubMed  CAS  Google Scholar 

  • Tabashnik BE, Sisterson MS, Ellsworth PC, Dennehy TJ, Antilla L, Liesner L, Whitlow M, Staten RT, Fabrick JA, Unnithan GC et al (2010) Suppressing resistance to Bt cotton with sterile insect releases. Nat Biotechnol 28:1304–1307

    Article  PubMed  CAS  Google Scholar 

  • Takken W, Costantini C (2006) The genetics of vector-host interactions: alternative strategies for genetic engineering for malaria control. In: Boëte C (ed) Genetically modified mosquitoes for malaria control. Landes Bioscience, Austin

    Google Scholar 

  • Takken W, Scott TW, Bogers RJ (2002) Ecological aspects for application of genetically modified mosquitoes. Paper presented at Frontis workshop on ecological challenges concerning the use of genetically modified mosquitoes for disease control, Wageningen

    Google Scholar 

  • Thomas DD, Donnelly CA, Wood RJ, Alphey LS (2000) Insect population control using a ­dominant, repressible, lethal genetic system. Science 287:2474–2476

    Article  PubMed  CAS  Google Scholar 

  • US Office of Science and Technology Policy (OSTP) (1986) Coordinated framework for regulation of biotechnology: announcement of policy and notice for public comment. Fed Regist:203–223, 393

    Google Scholar 

  • USDA (2012) Determinations of non-regulated status (online) Available at http://www.aphis.usda.gov/biotechnology/not_reg.html. Accessed 28 June 2012

  • WHO (2009) Planning meetings on progress and prospects for the use of genetically modified mosquitoes to prevent disease transmission: meeting 1 technical consultations on the current status and planning for future development, Geneva

    Google Scholar 

  • WHO/TDR (1991) Report of the meeting “Prospects for malaria control by genetic manipulation of its vectors”. Paper presented at Vector biology meeting, Tuscon, Arizona, TDR/BCV/MAL-ENT/91

    Google Scholar 

  • Windbichler N, Papathanos PA, Crisanti A (2008) Targeting the X chromosome during spermatogenesis induces Y chromosome transmission ratio distortion and early dominant embryo lethality in Anopheles gambiae. PLoS Genet 4:e1000291

    Article  PubMed  Google Scholar 

  • Wise de Valdez MR, Nimmo D, Betz J, Gong H-F, James AA, Alphey L, Black WC IV (2011) Genetic elimination of dengue vector mosquitoes. In: Proceedings of the National Academy of Sciences (USA) published ahead of print 7 Mar 2011

    Google Scholar 

  • Yakob L, Alphey L, Bonsall M (2008) Aedes aegypti control: the concomitant role of competition, space and transgenic technologies. J Appl Ecol 45:1258–1265

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luke S. Alphey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Alphey, L.S., Beech, C.J. (2012). Genetically Engineered Insects – Regulatory Progress and Challenges. In: Wozniak, C., McHughen, A. (eds) Regulation of Agricultural Biotechnology: The United States and Canada. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2156-2_13

Download citation

Publish with us

Policies and ethics