Skip to main content

Extinction Learning in Honey Bees

  • Chapter
  • First Online:
Honeybee Neurobiology and Behavior

Abstract

Extinction describes the decrease of a conditioned behavior after ­reinforcement has failed. This paper discusses studies on extinction in harnessed honey bees with the aim of understanding the relevance of this learning phenomenon for the natural behavior of free-flying honey bees. It has been demonstrated that the reward memory is crucial to the extinction outcome and that the memory phase during which the reward memory is extinguished is critical. Based on these considerations we suggest that extinction plays a role in the adaptive behavior of foraging honey bees to variable food sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PER:

Proboscis extension reflex

CR:

Conditioned response

CS:

Conditioned stimulus

US:

Unconditioned stimulus

References

  1. Bitterman ME, Menzel R, Fietz A, Schäfer S (1983) Classical conditioning of proboscis extension in honeybees (Apis mellifera). J Comp Psychol 97(2):107–119

    Article  PubMed  CAS  Google Scholar 

  2. Bouton ME (2002) Context, ambiguity, and unlearning: sources of relapse after behavioral extinction. Biol Psychiatry 52(10):976–986

    Article  PubMed  Google Scholar 

  3. Bouton ME, Moody EW (2004) Memory processes in classical conditioning. Neurosci Biobehav Rev 28(7):663–674

    Article  PubMed  Google Scholar 

  4. Couvillon PA, Bitterman ME (1980) Some phenomena of associative learning in honeybees. J Comp Physiol Psychol 94:878–885

    Article  Google Scholar 

  5. Couvillon PA, Bitterman ME (1984) The overlearning-extinction effect and successive negative contrast in honeybees (Apis mellifera). J Comp Psychol 98(1):100–109

    Article  PubMed  CAS  Google Scholar 

  6. Dudai Y (2004) The neurobiology of consolidations, or, how stable is the engram? Annu Rev Psychol 55:51–86

    Article  PubMed  Google Scholar 

  7. Dudai Y, Eisenberg M (2004) Rites of passage of the engram: reconsolidation and the lingering consolidation hypothesis. Neuron 44(1):93–100

    Article  PubMed  CAS  Google Scholar 

  8. Eisenhardt D, Menzel R (2007) Extinction learning, reconsolidation and the internal reinforcement hypothesis. Neurobiol Learn Mem 87(2):167–173

    Article  PubMed  Google Scholar 

  9. Friedrich A, Thomas U, Müller U (2004) Learning at different satiation levels reveals parallel functions for the cAMP-protein kinase A cascade in formation of long-term memory. J Neurosci 24(18):4460–4468

    Article  PubMed  CAS  Google Scholar 

  10. Gil M, De Marco RJ (2009) Honeybees learn the sign and magnitude of reward variations. J Exp Biol 212(17):2830–2834

    Article  PubMed  Google Scholar 

  11. Gil M, De Marco RJ, Menzel R (2007) Learning reward expectations in honeybees. Learn Mem 14(7):491–496

    Article  PubMed  Google Scholar 

  12. Greggers U, Mauelshagen J (1997) Matching behavior of honeybees in a multiple-choice situation: the differential effect of environmental stimuli on the choice process. Anim Learn Behav 25(4):458–472

    Article  Google Scholar 

  13. Greggers U, Menzel R (1993) Memory dynamics and foraging strategies of honeybees. Behav Ecol Sociobiol 32(1):17–29

    Article  Google Scholar 

  14. Grünbaum L, Müller U (1998) Induction of a specific olfactory memory leads to a long-lasting activation of protein kinase C in the antennal lobe of the honeybee. J Neurosci 18(11):4384–4392

    PubMed  Google Scholar 

  15. Hadar R, Menzel R (2010) Memory formation in reversal learning of the honeybee. Front Behav Neurosci 4:186

    Article  PubMed  Google Scholar 

  16. Hammer O (1949) Investigations on the nectar-flow of red clover. Oikos 1(1):34–47

    Article  Google Scholar 

  17. Hammer M (1993) An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees. Nature 366(6450):59–63

    Article  Google Scholar 

  18. Hourcade B, Muenz TS, Sandoz JC, Rössler W, Devaud JM (2010) Long-term memory leads to synaptic reorganization in the mushroom bodies: a memory trace in the insect brain? J Neurosci 30(18):6461–6465

    Article  PubMed  CAS  Google Scholar 

  19. Hussaini SA, Bogusch L, Landgraf T, Menzel R (2009) Sleep deprivation affects extinction but not acquisition memory in honeybees. Learn Mem 16(11):698–705

    Article  PubMed  Google Scholar 

  20. Menzel R (1968) Das Gedächtnis der Honigbiene für Spektralfarben I. Kurzzeitiges und langzeitiges Behalten. Z vergl Physiol 60:82–102

    Article  Google Scholar 

  21. Menzel R (1990) Learning, memory, and “cognition” in honey bees. In: Kesner RP, Olton DS (eds) Neurobiology of comparative cognition. Lawrence Erlbaum Associates, Inc., Hillsdale, pp 237–292

    Google Scholar 

  22. Menzel R (1999) Memory dynamics in the honeybee. J Comp Physiol A 185(4):323–340

    Article  Google Scholar 

  23. Menzel R, Manz G, Menzel R, Greggers U (2001) Massed and spaced learning in honeybees: the role of CS, US, the intertrial interval, and the test interval. Learn Mem 8(4):198–208

    Article  PubMed  CAS  Google Scholar 

  24. Moore D, Van Nest BN, Seier E (2011) Diminishing returns: the influence of experience and environment on time-memory extinction in honey bee foragers. J Comp Physiol A 197(6):641–651

    Article  PubMed  Google Scholar 

  25. Müller U (2002) Learning in honeybees: from molecules to behaviour. Zoology (Jena) 105(4):313–320

    CAS  Google Scholar 

  26. Myers KM, Davis M (2002) Behavioral and neural analysis of extinction. Neuron 36(4):567–584

    Article  PubMed  CAS  Google Scholar 

  27. Nader K (2003) Memory traces unbound. Trends Neurosci 26(2):65–72

    Article  PubMed  CAS  Google Scholar 

  28. Núñez J (1977) Nectar flow by melliferous flora and gathering flow by Apis mellifera ligustica. J Insect Physiol 23(2):265–275

    Article  Google Scholar 

  29. Pape HC, Pare D (2010) Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol Rev 90(2):419–463

    Article  PubMed  CAS  Google Scholar 

  30. Pavlov IP (1927) Conditioned reflexes: an investigation of the activity of the cerebral cortex. Oxford University Press, Oxford

    Google Scholar 

  31. Percival MS (1946) Observations on the flowering and nectar secretion of Rubus fruticosus (Agg.). New Phytol 45(1):111–123

    Article  Google Scholar 

  32. Rescorla R (1972) A theory of classical conditioning: variations in the effectiveness of reinforcement and non-reinforcement. In: Black P (ed) Classical conditioning II: current research and theory. Appleton, New York, pp 64–99

    Google Scholar 

  33. Sandoz JC, Pham-Delègue MH (2004) Spontaneous recovery after extinction of the conditioned proboscis extension response in the honeybee. Learn Mem 11(5):586–597

    Article  PubMed  Google Scholar 

  34. Sara SJ (2000) Retrieval and reconsolidation: toward a neurobiology of remembering. Learn Mem 7(2):73–84

    Article  PubMed  CAS  Google Scholar 

  35. Schwärzel M, Heisenberg M, Zars T (2002) Extinction antagonizes olfactory memory at the subcellular level. Neuron 35(5):951–960

    Article  Google Scholar 

  36. Stollhoff N, Eisenhardt D (2009) Consolidation of an extinction memory depends on the unconditioned stimulus magnitude previously experienced during training. J Neurosci 29(30):9644–9650

    Article  PubMed  CAS  Google Scholar 

  37. Stollhoff N, Menzel R, Eisenhardt D (2005) Spontaneous recovery from extinction depends on the reconsolidation of the acquisition memory in an appetitive learning paradigm in the honeybee (Apis mellifera). J Neurosci 25(18):4485–4492

    Article  PubMed  CAS  Google Scholar 

  38. Wüstenberg D, Gerber B, Menzel R (1998) Short communication: long- but not medium-term retention of olfactory memories in honeybees is impaired by actinomycin D and anisomycin. Eur J Neurosci 10(8):2742–2745

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothea Eisenhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Eisenhardt, D. (2012). Extinction Learning in Honey Bees. In: Galizia, C., Eisenhardt, D., Giurfa, M. (eds) Honeybee Neurobiology and Behavior. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2099-2_32

Download citation

Publish with us

Policies and ethics