Skip to main content

The Molecular Biology of Learning and Memory – Memory Phases and Signaling Cascades

  • Chapter
  • First Online:
Book cover Honeybee Neurobiology and Behavior

Abstract

In species as diverse as mollusks, insects, birds, and mammals memories are highly dynamic and cover phases from seconds to a lifetime. In honey bees as in other species, the induction of distinct memory phases depends on parameters like the number and succession of the training trials. Employing techniques developed to monitor and manipulate the activity of signaling cascades in intact honey bees, training parameters could be linked to temporal modulations of signaling cascades that contribute to distinct memory phases. This analysis uncovered a dynamic network of signaling events in the antennal lobes (ALs) and the mushroom bodies (MBs) that are required for defined aspects of both, the induction and the maintenance of distinct memory phases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

eLTM:

Early phase LTM

lLTM:

Late phase LTM

LTM:

Long-term memory

MTM:

Mid-term memory

NO:

Nitric oxide

OA:

Octopamine

CS:

Conditioned stimulus

US:

Unconditioned stimulus

References

  1. Abel T, Nguyen PV, Barad M, Deuel TA, Kandel ER et al (1997) Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell 88(5):615–626

    Article  PubMed  CAS  Google Scholar 

  2. Balfanz S, Strunker T, Frings S, Baumann A (2005) A family of octopamine [corrected] receptors that specifically induce cyclic AMP production or Ca2+ release in Drosophila melanogaster. J Neurochem 93(2):440–451

    Article  PubMed  CAS  Google Scholar 

  3. Dash PK, Hochner B, Kandel ER (1990) Injection of the cAMP-responsive element into the nucleus of Aplysia sensory neurons blocks long-term facilitation. Nature 345(6277):718–721

    Article  PubMed  CAS  Google Scholar 

  4. Davis RL (2005) Olfactory memory formation in Drosophila: from molecular to systems neuroscience. Annu Rev Neurosci 28:275–302

    Article  PubMed  CAS  Google Scholar 

  5. Davis HP, Squire LR (1984) Protein synthesis and memory: a review. Psychol Bull 96(3):518–559

    Article  PubMed  CAS  Google Scholar 

  6. Deisseroth K, Mermelstein PG, Xia H, Tsien RW (2003) Signaling from synapse to nucleus: the logic behind the mechanisms. Curr Opin Neurobiol 13(3):354–365

    Article  PubMed  CAS  Google Scholar 

  7. Drier EA, Tello MK, Cowan M, Wu P, Blace N et al (2002) Memory enhancement and formation by atypical PKM activity in Drosophila melanogaster. Nat Neurosci 5(4):316–324

    Article  PubMed  CAS  Google Scholar 

  8. Erber J, Masuhr T, Menzel R (1980) Localization of short-term memory in the brain of the bee, Apis mellifera. Physiol Entomol 5:343–358

    Article  Google Scholar 

  9. Fiala A, Müller U, Menzel R (1999) Reversible downregulation of protein kinase A during olfactory learning using antisense technique impairs long-term memory formation in the honeybee, Apis mellifera. J Neurosci 19(22):10125–10134

    PubMed  CAS  Google Scholar 

  10. Friedrich A, Thomas U, Müller U (2004) Learning at different satiation levels reveals parallel functions for the cAMP-protein kinase A cascade in formation of long-term memory. J Neurosci 24(18):4460–4468

    Article  PubMed  CAS  Google Scholar 

  11. Funada M, Yasuo S, Yoshimura T, Ebihara S, Sasagawa H et al (2004) Characterization of the two distinct subtypes of metabotropic glutamate receptors from honeybee, Apis mellifera. Neurosci Lett 359(3):190–194

    Article  PubMed  CAS  Google Scholar 

  12. Galizia CG, Menzel R (2000) Odour perception in honeybees: coding information in glomerular patterns. Curr Opin Neurobiol 10(4):504–510

    Article  PubMed  CAS  Google Scholar 

  13. Grohmann L, Blenau W, Erber J, Ebert PR, Strunker T et al (2003) Molecular and functional characterization of an octopamine receptor from honeybee (Apis mellifera) brain. J Neurochem 86(3):725–735

    Article  PubMed  CAS  Google Scholar 

  14. Grünbaum L, Müller U (1998) Induction of a specific olfactory memory leads to a long-lasting activation of protein kinase C in the antennal lobe of the honeybee. J Neurosci 18(11):4384–4392

    PubMed  Google Scholar 

  15. Hammer M (1993) An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees. Nature 366:59–63

    Article  Google Scholar 

  16. Hammer M, Menzel R (1995) Learning and memory in the honeybee. J Neurosci 15(3 Pt 1):1617–1630

    PubMed  CAS  Google Scholar 

  17. Hammer M, Menzel R (1998) Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees. Learn Mem 5(1–2):146–156

    PubMed  CAS  Google Scholar 

  18. Heisenberg M (2003) Mushroom body memoir: from maps to models. Nat Rev Neurosci 4(4):266–275

    Article  PubMed  CAS  Google Scholar 

  19. Heisenberg M, Borst A, Wagner S, Byers D (1985) Drosophila mushroom body mutants are deficient in olfactory learning. J Neurogenet 2(1):1–30

    Article  PubMed  CAS  Google Scholar 

  20. Hildebrandt H, Müller U (1995) Octopamine mediates rapid stimulation of protein kinase A in the antennal lobe of honeybees. J Neurobiol 27(1):44–50

    Article  PubMed  CAS  Google Scholar 

  21. Hildebrandt H, Müller U (1995) PKA activity in the antennal lobe of honeybees is regulated by chemosensory stimulation in vivo. Brain Res 679(2):281–288

    Article  PubMed  CAS  Google Scholar 

  22. Isabel G, Pascual A, Preat T (2004) Exclusive consolidated memory phases in Drosophila. Science 304(5673):1024–1027

    Article  PubMed  CAS  Google Scholar 

  23. Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294(5544):1030–1038

    Article  PubMed  CAS  Google Scholar 

  24. Leboulle G, Müller U (2004) Synergistic activation of insect cAMP-dependent protein kinase A (type II) by cyclicAMP and cyclicGMP. FEBS Lett 576(1–2):216–220

    Article  PubMed  CAS  Google Scholar 

  25. Locatelli F, Bundrock G, Müller U (2005) Focal and temporal release of glutamate in the mushroom bodies improves olfactory memory in Apis mellifera. J Neurosci 25(50):11614–11618

    Article  PubMed  CAS  Google Scholar 

  26. Maleszka R, Helliwell P, Kucharski R (2000) Pharmacological interference with glutamate re-uptake impairs long-term memory in the honeybee, Apis mellifera. Behav Brain Res 115(1):49–53

    Article  PubMed  CAS  Google Scholar 

  27. Menzel R (1999) Memory dynamics in the honeybee. J Comp Physiol A 185:323–340

    Article  Google Scholar 

  28. Menzel R, Müller U (1996) Learning and memory in honeybees: from behavior to neural substrates. Annu Rev Neurosci 19:379–404

    Article  PubMed  CAS  Google Scholar 

  29. Müller U (1994) Ca2+/calmodulin-dependent nitric oxide synthase in Apis mellifera and Drosophila melanogaster. Eur J Neurosci 6(8):1362–1370

    Article  PubMed  Google Scholar 

  30. Müller U (1996) Inhibition of nitric oxide synthase impairs a distinct form of long-term memory in the honeybee, Apis mellifera. Neuron 16(3):541–549

    Article  PubMed  Google Scholar 

  31. Müller U (1997) Neuronal cAMP-dependent protein kinase type II is concentrated in mushroom bodies of Drosophila melanogaster and the honeybee Apis mellifera. J Neurobiol 33(1):33–44

    Article  PubMed  Google Scholar 

  32. Müller U (1997) The nitric oxide system in insects. Prog Neurobiol 51(3):363–381

    Article  PubMed  Google Scholar 

  33. Müller U (2000) Prolonged activation of cAMP-dependent protein kinase during conditioning induces long-term memory in honeybees. Neuron 27(1):159–168

    Article  PubMed  Google Scholar 

  34. Müller U (2002) Learning in honeybees: from molecules to behaviour. Zoology (Jena) 105(4):313–320

    Google Scholar 

  35. Müller U, Carew TJ (1998) Serotonin induces temporally and mechanistically distinct phases of persistent PKA activity in Aplysia sensory neurons. Neuron 21(6):1423–1434

    Article  PubMed  Google Scholar 

  36. Müller U, Hildebrandt H (1995) The nitric oxide/cGMP system in the antennal lobe of Apis mellifera is implicated in integrative processing of chemosensory stimuli. Eur J Neurosci 7(11):2240–2248

    Article  PubMed  Google Scholar 

  37. Müller U, Hildebrandt H (2002) Nitric oxide/cGMP-mediated protein kinase A activation in the antennal lobes plays an important role in appetitive reflex habituation in the honeybee. J Neurosci 22(19):8739–8747

    PubMed  Google Scholar 

  38. Nguyen PV, Abel T, Kandel ER (1994) Requirement of a critical period of transcription for induction of a late phase of LTP. Science 265(5175):1104–1107

    Article  PubMed  CAS  Google Scholar 

  39. Reissner KJ, Shobe JL, Carew TJ (2006) Molecular nodes in memory processing: insights from Aplysia. Cell Mol Life Sci 63(9):963–974

    Article  PubMed  CAS  Google Scholar 

  40. Riedel G, Platt B, Micheau J (2003) Glutamate receptor function in learning and memory. Behav Brain Res 140(1–2):1–47

    Article  PubMed  CAS  Google Scholar 

  41. Sacktor TC (2008) PKMzeta, LTP maintenance, and the dynamic molecular biology of memory storage. Prog Brain Res 169:27–40

    Article  PubMed  CAS  Google Scholar 

  42. Schwärzel M, Müller U (2006) Dynamic memory networks: dissecting molecular mechanisms underlying associative memory in the temporal domain. Cell Mol Life Sci 63(9):989–998

    Article  PubMed  Google Scholar 

  43. Silva AJ, Kogan JH, Frankland PW, Kida S (1998) CREB and memory. Annu Rev Neurosci 21:127–148

    Article  PubMed  CAS  Google Scholar 

  44. Skoulakis EM, Grammenoudi S (2006) Dunces and da Vincis: the genetics of learning and memory in Drosophila. Cell Mol Life Sci 63(9):975–988

    Article  PubMed  CAS  Google Scholar 

  45. Sutton MA, Bagnall MW, Sharma SK, Shobe J, Carew TJ (2004) Intermediate-term memory for site-specific sensitization in Aplysia is maintained by persistent activation of protein kinase C. J Neurosci 24(14):3600–3609

    Article  PubMed  CAS  Google Scholar 

  46. Wüstenberg D, Gerber B, Menzel R (1998) Short communication: long- but not medium-term retention of olfactory memories in honeybees is impaired by actinomycin D and anisomycin. Eur J Neurosci 10(8):2742–2745

    Article  PubMed  Google Scholar 

  47. Xia S, Miyashita T, Fu TF, Lin WY, Wu CL et al (2005) NMDA receptors mediate olfactory learning and memory in Drosophila. Curr Biol 15(7):603–615

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uli Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Müller, U. (2012). The Molecular Biology of Learning and Memory – Memory Phases and Signaling Cascades. In: Galizia, C., Eisenhardt, D., Giurfa, M. (eds) Honeybee Neurobiology and Behavior. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2099-2_31

Download citation

Publish with us

Policies and ethics