Skip to main content

Molecular Insights into Honey Bee Brain Plasticity

  • Chapter
  • First Online:
Honeybee Neurobiology and Behavior

Abstract

The honey bee worker experiences changing sensory environments throughout her adult life as she progresses from a young nurse bee living inside the hive to a forager bee that navigates the outdoors. Honey bees continually process and learn new sensory information, and their brain changes accordingly. Numerous studies have demonstrated age- and experience-dependent variations in neuropil volume and synaptic density of the honey bee antennal lobes (ALs) and the mushroom bodies (MBs), in particular linked to foraging and odor learning. Changes in antennal sensitivity and AL neural activity after olfactory learning have also been documented. Here, we present evidence for molecular changes occurring in the adult honey bee brain. We discuss how sensory experience and learning affect expression patterns of olfactory receptor genes in the antennae and synaptic adhesion molecules in higher brain centres. Our studies indicate the molecular basis of sensory processing is highly plastic throughout life, and that it is regulated by sensory input. We discuss how sensory regulated expression of olfactory receptors and synaptic molecules may provide a basis for understanding anatomical and physiological plasticity of the honey bee brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AL:

Antennal lobe

CS:

Conditioned stimulus

MB:

Mushroom body

US:

Unconditioned stimulus

References

  1. Alaux C, Robinson G (2007) Alarm pheromone induces immediate–early gene expression and slow behavioral response in honey bees. J Chem Ecol 33(7):1346–1350

    Article  PubMed  CAS  Google Scholar 

  2. Banovic D, Khorramshahi O, Owald D, Wichmann C, Riedt T et al (2010) Drosophila neuroligin 1 promotes growth and postsynaptic differentiation at glutamatergic neuromuscular junctions. Neuron 66(5):724–738

    Article  PubMed  CAS  Google Scholar 

  3. Bhagavan S, Smith BH (1997) Olfactory conditioning in the honey bee, Apis mellifera: effects of odor intensity. Physiol Behav 61:107–117

    Article  PubMed  CAS  Google Scholar 

  4. Biswas S, Russell RJ, Jackson CJ, Vidovic M, Ganeshina O et al (2008) Bridging the synaptic gap: neuroligins and neurexin I in Apis mellifera. PLoS One 3(10):e3542

    Article  PubMed  Google Scholar 

  5. Biswas S, Reinhard J, Oakeshott J, Russell R, Srinivasan MV et al (2010) Sensory regulation of neuroligins and neurexin I in the honeybee brain. PLoS One 5(2):e9133

    Article  PubMed  Google Scholar 

  6. Brown SM, Napper RM, Thompson CM, Mercer AR (2002) Stereological analysis reveals striking differences in the structural plasticity of two readily identifiable glomeruli in the antennal lobes of the adult worker honeybee. J Neurosci 22(19):8514–8522

    PubMed  CAS  Google Scholar 

  7. Brown SM, Napper RM, Mercer AR (2004) Foraging experience, glomerulus volume, and synapse number: a stereological study of the honey bee antennal lobe. J Neurobiol 60(1):40–50

    Article  PubMed  Google Scholar 

  8. Bruel-Jungerman E, Davis S, Laroche S (2007) Brain plasticity mechanisms and memory: a party of four. Neuroscientist 13(5):492–505

    Article  PubMed  Google Scholar 

  9. Burne T, Scott E, van Swinderen B, Hilliard M, Reinhard J et al (2011) Big ideas for small brains: what can psychiatry learn from worms, flies, bees and fish? Mol Psychiatry 16:7–16

    Article  PubMed  CAS  Google Scholar 

  10. Cristino AS, Núñez FM, Lobo CH, Bitondi MM, Simoes ZL et al (2006) Caste development and reproduction: a genome-wide analysis of hallmarks of insect eusociality. Insect Mol Biol 15(5):703–714

    Article  PubMed  CAS  Google Scholar 

  11. de Jong R, Pham-Delègue MH (1991) Electroantennogram responses related to olfactory conditioning in the honey bee (Apis mellifera ligustica). J Insect Physiol 37(4):319–324

    Article  Google Scholar 

  12. de Wit J, Sylwestrak E, O’Sullivan M, Otto S, Tiglio K et al (2009) LRRTM2 interacts with neurexin1 and regulates excitatory synapse formation. Neuron 64:799–806

    Article  PubMed  Google Scholar 

  13. Dean C, Dresbach T (2006) Neuroligins and neurexins: linking cell adhesion, synapse formation and cognitive function. Trends Neurosci 29(1):21–29

    Article  PubMed  CAS  Google Scholar 

  14. Durst C, Eichmüller S, Menzel R (1994) Development and experience lead to increased volume of subcompartments of the honeybee mushroom body. Behav Neural Biol 62(3):259–263

    Article  PubMed  CAS  Google Scholar 

  15. Faber T, Joerges J, Menzel R (1999) Associative learning modifies neural representations of odors in the insect brain. Nat Neurosci 2:74–78

    Article  PubMed  CAS  Google Scholar 

  16. Fahrbach SE, Strande JL, Robinson GE (1995) Neurogenesis is absent in the brains of adult honey bees and does not explain behavioral neuroplasticity. Neurosci Lett 197:145–148

    Article  PubMed  CAS  Google Scholar 

  17. Farris SM, Robinson GE, Fahrbach SE (2001) Experience- and age-related outgrowth of intrinsic neurons in the mushroom bodies of the adult worker honeybee. J Neurosci 21(16):6395–6404

    PubMed  CAS  Google Scholar 

  18. Fernandez PC, Locatelli FF, Person-Rennell N, Deleo G, Smith BH (2009) Associative conditioning tunes transient dynamics of early olfactory processing. J Neurosci 29(33):10191–10202

    Article  PubMed  CAS  Google Scholar 

  19. Galizia CG, Joerges J, Kuttner A, Faber T, Menzel R (1997) A semi-in-vivo preparation for optical recording of the insect brain. J Neurosci Methods 76:61–69

    Article  PubMed  CAS  Google Scholar 

  20. Getz W, Akers R (1993) Olfactory response characteristics and tuning structure of placodes in the honeybee, Apis mellifera L. Apidologie 24:195–217

    Article  Google Scholar 

  21. Heisenberg M (1998) What do the mushroom bodies do for the insect brain? An introduction. Learn Mem 5(1–2):1–10

    PubMed  CAS  Google Scholar 

  22. Heisenberg M (2003) Mushroom body memoir: from maps to models. Nat Rev Neurosci 4(4):266–275

    Article  PubMed  CAS  Google Scholar 

  23. Heisenberg M, Heusipp M, Wanke C (1995) Structural plasticity in the Drosophila brain. J Neurosci 15:1951–1960

    PubMed  CAS  Google Scholar 

  24. Hiesinger P, Zhai R, Zhou Y, Koh T, Mehta S et al (2006) Activity-independent prespecification of synaptic partners in the visual map of Drosophila. Curr Biol 16:1835–1843

    Article  PubMed  CAS  Google Scholar 

  25. Hourcade B, Perisse E, Devaud J-M, Sandoz J-C (2009) Long-term memory shapes the primary olfactory center of an insect brain. Learn Mem 16(10):607–615

    Article  PubMed  Google Scholar 

  26. Hourcade B, Muenz TS, Sandoz J-C, Rössler W, Devaud J-M (2010) Long-term memory leads to synaptic reorganization in the mushroom bodies: a memory trace in the insect brain? J Neurosci 30(18):6461–6465

    Article  PubMed  CAS  Google Scholar 

  27. Kano M, Hashimoto K (2009) Synapse elimination in the central nervous system. Curr Opin Neurobiol 19(2):154–161

    Article  PubMed  CAS  Google Scholar 

  28. Kim J, Diamond D (2002) The stressed hippocampus, synaptic plasticity and lost memories. Nat Rev Neurosci 3:453–462

    Article  PubMed  CAS  Google Scholar 

  29. Knudsen JT, Eriksson R, Gershenzon J, Stahl B (2006) Diversity and distribution of floral scent. Bot Rev 72:1–120

    Article  Google Scholar 

  30. Kolb B, Whishaw I (1998) Brain plasticity and behaviour. Annu Rev Psychol 49:43–64

    Article  PubMed  CAS  Google Scholar 

  31. Krofczik S, Khojasteh U, de Ibarra NH, Menzel R (2008) Adaptation of microglomerular complexes in the honeybee mushroom body lip to manipulations of behavioral maturation and sensory experience. Dev Neurobiol 68(8):1007–1017

    Article  PubMed  Google Scholar 

  32. Laloi D, Bailez O, Blight M, Roger B, Pham-Delegue M et al (2000) Recognition of complex odors by restrained and free-flying honeybees, Apis mellifera. J Chem Ecol 26:2307–2319

    Article  CAS  Google Scholar 

  33. Lise MF, El-Husseini A (2006) The neuroligin and neurexin families: from structure to function at the synapse. Cell Mol Life Sci 63(16):1833–1849

    Article  PubMed  CAS  Google Scholar 

  34. Maleszka J, Barron A, Helliwell P, Maleszka R (2009) Effect of age, behaviour and social environment on honey bee brain plasticity. J Comp Physiol A 195(8):733–740

    Article  Google Scholar 

  35. Menzel R, Giurfa M (2001) Cognitive architecture of a mini-brain: the honeybee. Trends Cogn Sci 5:62–71

    Article  PubMed  Google Scholar 

  36. Murphey R (1986) The myth of the inflexible invertebrate: competition and synaptic remodelling in the development of invertebrate nervous systems. J Neurobiol 17:585–591

    Article  PubMed  CAS  Google Scholar 

  37. Peele P, Ditzen M, Menzel R, Galizia CG (2006) Appetitive odor learning does not change olfactory coding in a subpopulation of honeybee antennal lobe neurons. J Comp Physiol A 192(10):1083–1103

    Article  CAS  Google Scholar 

  38. Reinhard J, Srinivasan MV, Zhang S (2004) Scent-triggered navigation in honeybees. Nature 427(6973):411

    Article  PubMed  CAS  Google Scholar 

  39. Robertson HM, Wanner KW (2006) The chemoreceptor superfamily in the honey bee, Apis mellifera: Expansion of the odorant, but not gustatory, receptor family. Genome Res 16(11):1395–1403

    Article  PubMed  CAS  Google Scholar 

  40. Sandoz JC, Pham-Delegue MH, Renou M, Wadhams LJ (2001) Asymmetrical generalisation between pheromonal and floral odours in appetitive olfactory conditioning of the honey bee (Apis mellifera L.). J Comp Physiol A 187:559–568

    Article  PubMed  CAS  Google Scholar 

  41. Sato K, Pellegrino M, Nakagawa T, Nakagawa T, Vosshall LB et al (2008) Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452(7190):1002–1006

    Article  PubMed  CAS  Google Scholar 

  42. Sigg D, Thompson CM, Mercer AR (1997) Activity-dependent changes to the brain and behavior of the honey bee, Apis mellifera (L.). J Neurosci 17(18):7148–7156

    PubMed  CAS  Google Scholar 

  43. Song JY, Ichtchenko K, Sudhof TC, Brose N (1999) Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. Proc Natl Acad Sci USA 96(3):1100–1105

    Article  PubMed  CAS  Google Scholar 

  44. Südhof T (2008) Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455(7215):903–911

    Article  PubMed  Google Scholar 

  45. Wadhams LJ, Blight MM, Kerguelen V, Le Metayer M, Marion-Poll F, Masson C, Pham-Delegue MH, Woodcock CM (1994) Discrimination of oilseed rape volatiles by honey bee: novel combined gas chromatographic-electrophysiological behavioral assay. J Chem Ecol 20:3221–3231

    Article  CAS  Google Scholar 

  46. Wanner KW, Nichols AS, Walden KKO, Brockmann A, Luetje CW et al (2007) A honey bee odorant receptor for the queen substance 9-oxo-2-decenoic acid. Proc Natl Acad Sci USA 104(36):14383–14388

    Article  PubMed  CAS  Google Scholar 

  47. Winnington AP, Napper RM, Mercer AR (1996) Structural plasticity of identified glomeruli in the antennal lobes of the adult worker honey bee. J Comp Neurol 365(3):479–490

    Article  PubMed  CAS  Google Scholar 

  48. Winston ML (1987) The biology of the honeybee. Harvard University Press, Cambridge

    Google Scholar 

  49. Withers GS, Fahrbach SE, Robinson GE (1993) Selective neuroanatomical plasticity and division of labour in the honeybee. Nature 364(6434):238–240

    Article  PubMed  CAS  Google Scholar 

  50. Zeng X, Sun M, Liu L, Chen F, Wei L et al (2007) Neurexin-1 is required for synapse formation and larvae associative learning in Drosophila. FEBS Lett 581(13):2509–2516

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Claudianos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Reinhard, J., Claudianos, C. (2012). Molecular Insights into Honey Bee Brain Plasticity. In: Galizia, C., Eisenhardt, D., Giurfa, M. (eds) Honeybee Neurobiology and Behavior. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2099-2_27

Download citation

Publish with us

Policies and ethics